• Title/Summary/Keyword: Atmospheric Plasma

Search Result 597, Processing Time 0.02 seconds

Plasma Medicine: How can Nonthermal Atmospheric Plasma be Applied to Medicine? (플라즈마 메디신: 저온 상압 플라즈마는 어떻게 의학분야에 적용될 수 있는가?)

  • Park, Sang Rye;Hong, Jin Woo;Lee, Hae June;Kim, Gyoo Cheon
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.838-846
    • /
    • 2013
  • As a forth state of material, plasma is ionized gas, which generates characteristically various reactive species. After late of $20^{th}$ century, plasma has been widely used in industry. After nonthermal atmospheric plasma was developed, it has been applied to biomedical fields. Nonthermal atmospheric plasma does not give thermal damages to human tissues, and it shows the high efficiency in cancer treatment, sterilization, tooth bleaching, coagulation, and wound healing. Because the application of plasma to biomedicine has been expanded through interdisciplinary studies, its value of high medical technology is increasing now. Since nonthermal atmospheric plasma was first applied to the mammalian cells and microorganisms, many valuable studies has been performed for about last 10 years, so that now the new research area called 'plasma medicine' has been formed. This article introduces the recent data resulted from plasma medicine and helps to understand the plasma medicine.

Influence of atmospheric pressure plasma on the melanogenesis in melanoma cells

  • Ali, Anser;Lee, SeungHyun;Attri, Pankaj;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.161.2-161.2
    • /
    • 2015
  • Melanin is a black pigment, responsible for hair and skin color. In order to find the melanin stimulatory technique which prove useful for a gray and a white hair-preventive agent or tanning agent, we developed atmospheric pressure plasma jet (APPJ) and tested for tyrosinase activity and melanin production in melanoma (B16F10) cells in vitro. We found plasma dose dependent increase in melanin production. To explore the contributing mechanism in melanin synthesis, intracellular reactive oxygen species (ROS) and MAP kinase signaling pathways were studied. Furthermore, the development of plasma technology for melanin synthesis and planning for in-vivo future studies will be discussed.

  • PDF

Effect of Rise Time of a Pulse Bias Voltage on Atmospheric Plasma Generation (대기압 플라즈마 발생시 인가전압의 상승시간에 따른 영향)

  • Kim, Jae-Hyeok;Jin, Sang-Il;Kim, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1218-1222
    • /
    • 2008
  • We investigate the effect of rise time of a pulse bias voltage on atmospheric plasma generation. With the faster rise time of the pulse bias, the glow discharge appears to be more uniformly generated along the electrodes. I-V measurement confirms that higher loading power can be obtained using the faster rise time. A new understanding for atmospheric plasma generation at a micro-gap electrode is suggested.

Atmospheric Pressure Micro Plasma Sources

  • Brown, Ian
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.384-390
    • /
    • 2001
  • The hollow cathode discharge is a kind of plasma formation scheme in which plasma is formed inside a hollow structure, the cathode, with current to a nearby anode of arbitrary shape. In this scheme, electrons reflex radially within the hollow cathode, establishing an efficient ionization mechanism for gas within the cavity. An existence condition for the hollow cathode effect is that the electron mean-free-path for ionization is of the order of the cavity radius. Thus the size of this kind of plasma source must decrease as the gas pressure is increased. In fact, the hollow cathode effect can occur even at atmospheric pressure for cathode diameters of order 10-100 $\mu\textrm{m}$. That is, the "natural" operating pressure regime for a "micro hollow cathode discharge" is atmospheric pressure. This kind of plasma source has been the subject of increasing research activity in recent years. A number of geometric variants have been explored, and operational requirements and typical plasma parameters have been determined. Large arrays of individual tiny sources can be used to form large-area, atmospheric-pressure plasma sources. The simplicity of the method and the capability of operation without the need for the usual vacuum system and its associated limitations, provide a highly attractive option for new approaches to many different kinds of plasma applications, including plasma surface modification technologies. Here we review the background work that has been carried out in this new research field.

  • PDF

Sterilization and quality variation of dried red pepper by atmospheric pressure dielectric barrier discharge plasma (대기압 유전체장벽방전 플라즈마에 의한 건고추의 식중독균 살균효과 및 품질변화)

  • Song, Yoon Seok;Park, Yu Ri;Ryu, Seung Min;Jeon, Hyeong Won;Eom, Sang Heum;Lee, Seung Je
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.960-966
    • /
    • 2016
  • This study was conducted to explore the potential for use of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganisms in dried red pepper. The effects of key parameters such as power, exposure time and distance on the sterilization efficiency and the quality of red dried pepper by the atmospheric pressure DBD plasma treatment were investigated. The results revealed that the plasma treatment was very effective for sterilization of Staphylococcus aureus, with 15 min of treatment at 1.0 kW and 20 mm sterilizing 82.6% of the S. aureus. Increasing the power or exposure time and decreasing the exposure distance led to improved sterilization efficiency. The atmospheric pressure DBD plasma treatment showed no effect on the ASTA (American spice trade association) value or hardness of dried red pepper. Furthermore, no effects of atmospheric pressure DBD plasma treatment were observed on the sensory properties of dried red pepper. To assess the storage stability, the dried red pepper was treated with atmospheric pressure DBD plasma (1.5 kW power, 15 min exposure time and 10 mm exposure distance), then stored for 12 weeks at $25^{\circ}C$. Consequently, the ASTA value, hardness and capsaicin concentration of dried red pepper were maintained.

Color Depth of Polyamide Fabrics Pretreated with Low-Temperature Plasma under Atmospheric Pressure (상압 저온 플라즈마 전처리한 폴리아미드계 직물의 색농도)

  • 이문철
    • Textile Coloration and Finishing
    • /
    • v.5 no.2
    • /
    • pp.134-138
    • /
    • 1993
  • Wool, silk and nylon 6 fabrics were treated with low-temperature plasma under atmospheric pressure of acetone/argon or helium/argon for 30 and 180 sec, and then dyed with leveling type acid dye, C.I. Acid Red 18 and milling type acid dye, C.I. Acid Blue 83. In spite of short time of the plasma treatment for thirty seconds, the color depth of wool fabrics was increased remarkably with both of the plasma gases, aceton/argon or helium/argon and with the kinds of dyes i.e., levelin type or milling type. But the atmosperic low-temperature plasmas did not increase the depth of silk and nylon 6 fabrics dyed with both of the acid dyes regardless of the teated time and plasma gases. It seems that low-temperature plasma by atmospheric-pressure discharge is effective for improvement of dyeing of wools as is the same way with the low-temperature plasma by glow discharge. The kinds of plasma gases and treated time did not influnce the depth of wool fabric pretreted with the atmosperic low-temperature plasmas.

  • PDF

Comparison of PCB Surface Treatment Effect Using UV Equipment and Atmospheric Pressure Plasma Equipment (UV 장비 및 대기압 플라즈마 장비를 이용한 PCB 표면 처리 효과 비교)

  • Ryu, Sun-Joong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.53-59
    • /
    • 2009
  • Low pressure mercury lamp type UV equipments have been widely used for cleaning and modification of PCB surfaces. To enhance the productivity of the process, we newly developed remote DBD type atmospheric pressure plasma equipment. The productivity of both equipments could be compared by measuring surface contact angle for various transferring speed. By the result of the measurement, we could verify that the productivity of the atmospheric pressure plasma be superior to the productivity of the UV equipment. XPS experiments confirmed that the surface effect of the UV and atmospheric pressure plasma processing are similar for each other. Organic contamination level was reduced after the processing and some surface elements were oxidized for both cases. Finally, the atmospheric pressure plasma equipment was adapted to flip chip BGA's flux printing process and it was concluded that the printing uniformity be enhanced by the atmospheric pressure plasma surface treatment.

  • PDF

High Performance InGaZnO Thin Film Transistor by Atmospheric Pressure Ar Plasma Treatment (대기압 아르곤 플라즈마 처리를 통한 IGZO TFT의 전기적 특성 향상 연구)

  • Jeong, Byung-Jun;Jeong, Jun-Kyo;Park, Jung-Hyun;Kim, Yu-Jung;Lee, Hi-Deok;Choi, Ho-Suk;Lee, Ga-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.59-62
    • /
    • 2017
  • In this paper, atmospheric pressure plasma treatment was proposed for high performance indium gallium zinc oxide thin film transistor (IGZO TFT). RF Ar plasma treatment is performed at room temperature under atmospheric pressure as a simple and cost effective channel surface treatment method. The experimental results show that field effect mobility can be enhanced by $2.51cm^2/V{\cdot}s$ from $1.69cm^2/V{\cdot}s$ to $4.20cm^2/V{\cdot}s$ compared with a conventional device without plasma treatment. From X-ray photoelectron spectroscopy (XPS) analysis, the increase of oxygen vacancies and decrease of metal-oxide bonding are observed, which suggests that the suggested atmospheric Ar plasma treatment is a cost-effective useful process method to control the IGZO TFT performance.

  • PDF

Treatment of Ar/O2 Atmospheric Pressure Plasma for Sterilization (아르곤과 산소 대기압 플라즈마 방전 효과를 이용한 살균처리)

  • Son, Hyang Ho;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.261-265
    • /
    • 2011
  • The sterilization effects of atmospheric pressure plasma with the mixture of argon and oxygen were analyzed. The plasma reactor with the shape of dielectric barrier discharge produced the uniform distribution of glow discharge and generated ozone gas effectively according to the various process parameters. The sterilization for E. coli was affected by power, oxygen ratio in the mixture gas, treatment time and distance between reactor and sample. The concentration of ozone was a major source for the sterilization of E. coli, which was enhanced by the increase of power and oxygen ratio. In this study, the effect of atmospheric pressure plasma treatment for the sterilization was confirmed and its result can deliver the atmospheric pressure plasma treatment as the novel sterilization method instead of conventional methods.

Alternative Finishing Process for Poly(ethylene terephthalate)(PET) Tire Cord using Atmospheric Plasma

  • Kim, Sam-Soo;Song, Eun-Young;Cho, Dong-Lyun;Park, Jun;Park, Sung-Ho;Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.22 no.4
    • /
    • pp.300-305
    • /
    • 2010
  • Poly(ethylene terephthalate)(PET) tire cord has relatively lower adhesion properties caused by limited reacting sites. In order to improve the adhesion force between PET tire cord and rubber, an additional process to activate surface of PET has been employed. Atmospheric plasma was used to substitute the chemical finishing process of PET tire cord as a green dipping process. Contact angle was measured to confirm surface change of PET after plasma treatment. The treated PET tire cords with/without resorcinol-formaldehyde-latex(RFL) and unvulcanized rubber were vulcanized in a testing mold at $160^{\circ}C$. After atmospheric plasma treatment of PET tire cord, adhesion force was somewhat increased under some conditions.