• Title/Summary/Keyword: Atmospheric Icing

Search Result 5, Processing Time 0.018 seconds

COMPUTATIONAL ANALYSIS OF AN ELECTRO-THERMAL ICE PROTECTION SYSTEM IN ATMOSPHERIC ICING CONDITIONS (대기 결빙 조건에서의 전기열 방식 결빙보호 시스템에 관한 전산해석)

  • Raj, L.P.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Atmospheric icing may have significant effects not only on safety of aircraft in air, but also on performance of wind turbine and power networks on ground. Thus, ice protection measure should be developed to protect these systems from icing hazards. A very efficient method is the electro-thermal de-icing based on a process by which ice accretion is melted and blown away through aerodynamic forces. In this computational study, a state-of-the-art icing code, FENSAP-ICE, was used for the analysis of electro thermal de-icing system. Computational results including detailed conjugate heat transfer analysis were then validated with experimental data. Further, the computational model was applied to the DU21 airfoil section of NREL 5MW wind turbine with calculated heater parameters.

A THREE-DIMENSIONAL UNSTRUCTURED FINITE VOLUME METHOD FOR ANALYSIS OF DROPLET IMPINGEMENT IN ICING (비정렬 격자 기반의 결빙 액적 해석을 위한 유한체적 기법)

  • Jung, K.Y.;Jung, S.K.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.41-48
    • /
    • 2013
  • Ice accretion on the solid surface is an importance factor in assessing the performance of aircraft and wind turbine blade. Changes in the external shape due to ice accretion can greatly deteriorate the aerodynamic performance. In this study, a three-dimensional upwind-type second-order positivity-preserving finite volume CFD scheme based on the unstructured mesh topology is developed to simulate two-phase flow in atmospheric icing condition. The code is then validated by comparing with NASA IRT experimental data on the sphere. The present results of the collection efficiency are found to be in close agreement with experimental data and show improvement near the stagnation region.

Fin and Temperature Effect of Frost in Ambient Air Vaporizer

  • Lee, Seong-Woo;Choi, Sung-Woong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.211-216
    • /
    • 2022
  • Since liquefied natural gas (LNG) is imported in a liquid state of about -162℃ to increase transportation efficiency in Korea, it must be vaporized in a gaseous state to supply it to consumers. Among them, ambient air vaporizer (AAV) has caught attention due to eco-friendly and low costs characteristics. However, there is a disadvantage that the performance of the heat exchanger is deteriorated due to frost due to mist and icing when used for a long time. In this paper, frost generation model in AAV vaporizer was investigated with numerically to examine utilizing the vaporizer performance with the frost generation behavior. The frost generation behavior of AAV vaporizers was examined with humidity, fin characteristic, and temperature effects. As for the LNG discharge temperature, the 12 fin vaporizer showed the highest discharge temperature when the atmospheric temperature was 25℃, and the 8 fin vaporizer had the lowest LNG discharge temperature when the atmospheric temperature was 0℃. In the case of frost formation, in the case of the 12 fin vaporizer, it was formed the most at the atmospheric temperature of 25℃, and the least was formed in the vaporizer at the 0℃ condition of the atmospheric temperature of 8 fins.

Atmospheric Icing Effects on the Aerodynamic Characteristics and Performance of Wind Turbine Blade (풍력 블레이드의 결빙에 의한 공력특성 및 성능 변화)

  • Park, Ji-Ho;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.134-143
    • /
    • 2014
  • A significant degradation in the aerodynamic performance of wind turbine system can occur by ice accretion on the surface of blades operated in cold climate. The ice accretion can result in performance loss, overloading due to delayed stall, excessive vibration associated with mass imbalance, ice shedding, instrumental measurement errors, and, in worst case, wind turbine system shutdown. In this study, the effects of ice accretions on the aerodynamic characteristics of wind turbine blade sections are investigated on the basis of modern CFD method. In addition, the computational results are used to predict the performance of three-dimensional wind turbine blade system through the blade element momentum method. It is shown that the thickness of ice accretion increases from the root to the tip and the effects of icing conditions such as relative wind velocity play significant role in the shape of ice accretion.

The study on corrosion of the inner area of closed box-girder for unpainted weathering steel bridges (무도장 내후성 강 교량의 밀폐형 박스거더 내부의 부식에 대한 고찰)

  • Ma, Seung-Hwan;Noh, Young-Tai;Jang, Gun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2391-2400
    • /
    • 2015
  • Weather proof steels are used for steel bridges due to its high corrosion resistance under atmospheric conditions. However, instead of forming stabilized rust layers, general rust occurs on weather proof steels under high humidity condition close to seawater or shady places. In Japan, therefore, they perform rust stabilization treatment instead of unpainted treatment due to severe atmospheric conditions. However, most of domestic weather proof steels were constructed unpainted in the form of closed box-girder, which makes the periodical repetition of dry and wet hard to occur. For the steel bridges constructed on the Han river, the evaporation of water, dew condensation due to temperature change, and stagnant water due to rain affect harmfully on the formation of passive film on weather proof steels. Thus, in this research, in order to analyze corrosion properties inside the closed box-girder for the unpainted weather proof steel bridge in the waterworks safety zone, multiple ways of analysis such as observation with eyes, cellophane-tape test, steel thickness measurement, surface corrosion potential measurement, electron microscope analysis, and X-ray diffraction analysis of the rust were performed. As a result, unstable rust layer was observed inside the closed box-girder, and severe corrosion was observed on the top and bottom of the flanges due to the effects of stagnant water caused by rain, dew condensation, and de-icing materials.