• Title/Summary/Keyword: Atmospheric Effect

Search Result 1,581, Processing Time 0.023 seconds

The Effect of Atmospheric Conditions on the Physical and Mechanical Properties of Linerboard

  • Kim, Hyoung-Jin;Choi, Woo-Young;Um, Gi-Jeung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.60-65
    • /
    • 2006
  • The physical and mechanical properties of linerboard were shown to be affected by changing atmospheric conditions. Two atmospheric conditions were measured in order to investigate how they were affected by different atmospheric conditions on the physical and mechanical properties of domestic linerboard. The basis data set for the standardization research was provided in this study. It is confirmed that the relative humidity seemed to be a major factor on the quality deterioration of a linerboard. Experimental results have shown that the short span compression test (SCT) could be used to evaluate the quality characteristics of linerboardat different moisture content and relative humidity.

A Weekend Effect in Diurnal Temperature Range and its Association with Aerosols in Seoul (서울의 일교차 주말효과와 에어러솔과의 연관성)

  • Kim, Byung-Gon;Kim, Yoo-Jun;Eun, Seung-Hee;Choi, Min-Hyuck
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.147-157
    • /
    • 2007
  • A weekend effect has been investigated in diurnal temperature range (DTR) for Seoul in Korea using 50-year (1955 ~ 2005) surface measurements of maximum and minimum temperatures, and particle mass concentrations (PM10). The minimum temperature increases by 0.42K per decade, 2 times faster than the maximum temperature during 1955 to 2005, for rapid urbanization has occurred in Seoul. The weekend effect, which is defined as the DTR for Sunday minus the average DTR for Tuseday through Thursday, can be as large as +0.08 K for the recent 20-year period relative to 0.01K for 1955 to 1975. Especially the wintertime DTR tends to have a remarkable positive weekend effect (+0.17K), that is, larger DTR on Sunday compared to weekdays, which seems to be associated with increased maximum temperature and thus an increase in DTR. This result could be explained by relative differences in PM10 concentration between Sunday and weekdays (Tuesday through Thursday), such that PM10 concentration on Sundays appears to be systematically lower about 12% than on weekdays. The annually average weekend DTR increases by 0.2K with $10{\mu}gm^{-3}$ decrease in PM10 concentration in comparison with weekdays. The results could be possible evidence of an anthropogenic link to DTR, one of climate important indicators, since no meteorological phenomenon is supposed to occur over a 7 day cycle.

Effect of urbanization on the light precipitation in the mid-Korean peninsula (한반도 중부지역에서 약한 강수에 미치는 도시화 효과)

  • Eun, Seung-Hee;Chae, Sang-Hee;Kim, Byung-Gon;Chang, Ki-Ho
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.229-241
    • /
    • 2011
  • The continuous urbanizations by a rapid economic growth and a steady increase in population are expected to have a possible impact on meteorology in the downwind region. Long-term (1972~2007) trends of precipitation have been examined in the mid-Korean peninsula for the westerly condition only, along with the sensitivity simulations for a golden day (11 February 2009). During the long-term period, both precipitation amount (PA) and frequency (PF) in the downwind region (Chuncheon, Wonju, Hongcheon) of urban area significantly increased for the westerly and light precipitation ($PA{\leq}1mm\;d^{-1}$) cases, whereas PA and PF in the mountainous region (Daegwallyeong) decreased. The enhancement ratio of PA and PF for the downwind region vs. urban region remarkably increased, which implies a possible urbanization effect on downwind precipitation. In addition, the WRF simulation applied for one golden day demonstrates enhanced updraft and its associated convergence in the downwind area (about 60 km), leading to an increase in the cloud mixing ratio. The sensitivity experiments with the change in surface roughness demonstrates a slight increase in cloud water mixing ratio but a negligible effect on precipitation in the upwind region, whereas those with the change in heat source represents the distinctive convergence and its associated updraft in the downwind region but a decrease in liquid water, which may be attributable to the evaporation of cloud droplet by atmospheric heating induced by an increase in an anthropogenic heat. In spite of limitations in the observation-based analysis and one-day simulation, the current result could provide an evidence of the effect of urbanization on the light precipitation in the downwind region.

Effects of Atmospheric Stability and Surface Temperature on Microscale Local Airflow in a Hydrological Suburban Area (대기 안정도와 지표면 온도가 미세규모 국지 흐름에 미치는 영향: 수문지역을 대상으로)

  • Park, Soo-Jin;Kim, Do-Yong;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • In this study, the effects of atmospheric stability and surface temperature on the microscale local airflow are investigated in a hydrological suburban area using a computational fluid dynamics (CFD) model. The model domain includes the river and industrial complex for analyzing the effect of water system and topography on local airflow. The surface boundary condition is constructed using a geographic information system (GIS) data in order to more accurately build topography and buildings. In the control experiment, it is shown that the topography and buildings mainly determine the microscale airflow (wind speed and wind direction). The sensitivity experiments of atmospheric stability (neutral, stable, and unstable conditions) represent the slight changes in wind speed with the increase in vertical temperature gradient. The differential heating of ground and water surfaces influences on the local meteorological factors such as air temperature, heat flow, and airflow. These results consequentially suggest that the meteorological impact assessment is accompanied by the changes of background land and atmospheric conditions. It is also demonstrated that the numerical experiments with very high spatial resolution can be useful for understanding microscale local meteorology.

Competition between ICME and crustal magnetic field on the loss of Mars atmosphere

  • Hwang, Junga;Jo, Gyeongbok;Kim, Roksoon;Jang, Soojeong;Cho, Kyungsuk;Lee, Jaejin;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.62.3-63
    • /
    • 2017
  • The Mars Atmosphere and Volatile (MAVEN) mission has been providing valuable information on the atmospheric loss of Mars since its launch in November 2013. The Neutral Gass and Ion Mass Spectrometer (NGIMS) onboard MAVEN, was developed to analyze the composition of the Martian upper atmospheric neutrals and ions depending on various space weather conditions. We investigate a variation of upper atmospheric ion densities depending on the interplanetary coronal mass ejections (ICMEs). It is known that the Mars has a very weak global magnetic field, so upper atmosphere of Mars has been strongly affected by the solar activities. Meanwhile, a strong crustal magnetic field exists on local surfaces, so they also have a compensating effect on the upper atmospheric loss outside the Mars. The weak crustal field has an influence up to 200km altitude, but on a strong field region, especially east longitude of $180^{\circ}$ and latitude of $-50^{\circ}$, they have an influence over 1,400km altitude. In this paper, we investigated which is more dominant between the crustal field effect and the ICME effect to the atmospheric loss. At 400km altitude, the ion density over the strong crustal field region did not show a significant variation despite of ICME event. However, over the other areas, the variation associated with ICME event is far more overwhelming.

  • PDF

Atmospheric Correction of Arc-Rail Type GB-SAR Using Refractive Index of Air (대기 굴절률을 이용한 원형레일 기반 지상 SAR 자료의 대기보정)

  • Lee, Jae-Hee;Kim, Kwang-Eun;Cho, Seong-Jun;Sung, Nak-Hoon;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.237-243
    • /
    • 2012
  • In this paper, an atmospheric effect of repetitive measurements of X-band (9.65 GHz) arc-rail type GB-SAR (ArcSAR) system was quantitatively analyzed. Four artificial triangular trihedral corner reflectors as stationary targets for getting stable back scattered signal during 43 hours continually. The results of the analysis showed that the phase of those stationary targets had changed maximum of 5 radian (12.4 mm) and total RMS error had was 1.62 radian (4 mm) during 65 repeated measuring time. The refractive index of air which was calculated using the temperature;humidity and pressure of atmosphere showed very close relationship with the phase difference. We could check the atmospheric correction was fulfilled by the correction of an atmospheric effect using refractive index during the selected 16 hours period showed that RMS error was dropped from 1.74 radian (4.3 mm) to 0.10 radian (0.24 mm).

Sensitivity Analysis of Surface Reflectance Retrieved from 6SV LUT for Each Channel of KOMPSAT-3/3A (KOMPSAT-3/3A 채널별 6SV 조견표의 지표반사도 민감도 분석)

  • Jung, Daeseong;Jin, Donghyun;Seong, Noh-Hun;Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Sim, Suyoung;Han, Kyung-Soo;Kim, Bo-Ram
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.785-791
    • /
    • 2020
  • The radiance measured from satellite has noise due to atmospheric effect. Atmospheric correction is the process of calculating surface reflectance by removing atmospheric effect and surface reflectance is calculated by the Radiative Transfer Model (RTM)-based Look-Up Table (LUT). In general, studies using a LUT make LUT for each channel with the same atmospheric and geometric conditions. However, atmospheric effect of atmospheric factors do not react sensitively in the same channel. In this study, the LUT for each channel of Korea Multi-Purpose SATellite (KOMPSAT)-3/3A was made under the same atmospheric·geometric conditions. And, the accuracy of the LUT was verified by using the simulated Top of Atmosphere radiation and surface reflectance in the RTM. As a result, the relative error of the surface reflectance in the blue channel that sensitive to the aerosol optical depth was 81.14% at the maximum, and 42.67% in the NIR (Near Infrared) channel.

The Selection of Sample Injection Modes and Its Effect on the Calibration Bias in S Gas Detection by Gas Chromatography (GC의 주입방식 차에 따른 고농도 악취황 성분의 검량오차 연구 : 주입부피의 고정방식 대비 주입농도의 고정방식 간 비교연구)

  • Kim Ki-Hyun;Choi YJ
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.269-274
    • /
    • 2005
  • In this work, analytical bias arising from the gas chromatographic determination of sulfur compounds was evaluated by the application of direct loop injection method to the GC/PFPD detection of four sulfur compounds including H$_{2}$S, CH$_{3}$SH, DMS, and DMDS. For the proper evaluation of analytical uncertainties involved in GC calibration, we employed two comparative techniques of calibration at fxed concentration injection (CFCI) vs calibration at fixed volume injection (CFVI) method. The results of our study indicate that CFCI method exhibits very poor sensitivity due to the matrix effect with varying injection volumes. On the other hand, as CFVI method overcomes such limitation, it can be used to obtain very accurate quantification of S compounds at their high concentration levels above a few to a few tens ppb.

Numerical Simulation of Effect of Urban Land-use Type and Anthropogenic Heat on Wind Field (지표면 변화와 인공열이 바람장에 미치는 영향에 관한 수치 시뮬레이션)

  • 홍정혜;김유근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.511-520
    • /
    • 2000
  • The urban atmosphere is characterized by th difference in surface and atmospheric environment between urban and more natural area. To investigate th climatic effect of land use type and anthropogenic heat of urban on wind field, numerical simulations were carried out under typical summer synoptic condition. The wind model PNU_MCM(Pusan National University Mesoscale Circulation Model) is based on the three-dimensional Boussinesq equations, taking into account the hydrostatic assumption . Since lane-use differs over every subdivision on Pusan the surface energy budget model includes sub0grid parameterization scheme which can calculate the total heat flux over a grid surface composed of different surfaces. The simulated surface wind agrees well with the observed value, and average over 6 days which represent typical summer lan-sea breeze days, August 1998, i.e. negligible gradient winds and almost clear skies. Urbanization makes sea-breeze enhance at day and reduce land-breeze at night. The results show that contribution of land-use type is much larger than that of anthropogenic heat in Pusan.

  • PDF

A Study on Effect of Atmospheric Gas on the Surface Cleanliness in the Batch Annealing Furnace (BAF풀림시 분위기가스가 표면 청정도에 미치는 영향에 관한 연구)

  • Yoon, Soon Hyun;Kim, Moon Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.159-167
    • /
    • 1996
  • The effect of atmospheric gas on the surface cleanliness in the batch annealing furnace(BAF) is presented. It is very important to improve the surface cleanliness to investigate the surface defects such as carbon contamination, smudge and yellow color phenomenon on the surface of steel sheet. In order to study the occurrence of surface defects of steel sheet, the annealing operations were carried out in the H2 BAF with 75% hydrogen and conventional BAF with 4% hydrogen. The hydrogen is important factor that affect the energy saving in the entire annealing cycle and the surface cleanliness. In the conventional BAF, it shows that to protect the yellow color phenomenon the proper finish temperature is $80^{\circ}C$ and in the smudge sample the oxidized thickness has the depth of $120{\AA}$.

  • PDF