• Title/Summary/Keyword: Atmospheric Effect

Search Result 1,587, Processing Time 0.027 seconds

Synthesis of Ga-silicate and Its Catalytic Performance for NO Removal under the Presence of Water

  • Misook Kang;Yoon, Yong-Soo;Um, Myeong-Heon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.1-8
    • /
    • 1999
  • Catalytic performance for NOx removal by Ga-incorporated silicates(Ga-silicate; Gallosilicate) with MFI type synthesized by the rapid crystallization method was reported in this study. NOx removal was investigated under the condition of O2 excess(10%), with various hydrocarbons of low concentrations. Effect of H2O(2%) addition was also considered. The result showd that the conversion from NOx to N2 was enhanced on the Ga-silicate compared with the Al-silicate. Furthermore, the performance for NOx conversion on the Ga-silicate increased with addition of water.

  • PDF

An Experimental Study on Transient Behavior of Granular Aerosol Filtration : Effect of Particle Deposition on Pressure Drop (입자층 에어로졸여과의 과도거동에 관한 실험연구 : 압력강하에 대한 입자 퇴적의 영향)

  • 정용원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.3
    • /
    • pp.193-205
    • /
    • 1997
  • Experiments on granular filtration of polydispersed aerosols were conducted to determine the changes in pressure drop necessary to maintain a given gas flow rate as filter becomes clogged with deposited particles. Among the various variables which affect the increase in the pressure drop during the filtration, the most important one was found to be the size of the deposited aerosol particles. It was shown that for a given extent of the total deposition, the extent of increase in pressure drop increases with the decrease of the deposited aerosol size. For the general case where the deposited particles have different sizes, a procedure was proposed for correlating and predicting experimental results on pressure drop. This procedure was found applicable to bidispersed aerosols and polydispersed aerosols.

  • PDF

Aerosol Wall Loss in Teflon Film Chambers Filled with Ambient Air

  • Lee Seung-Bok;Bae Gwi-Nam;Moon Kil-Choo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.35-41
    • /
    • 2004
  • Aerosol wall loss is an important factor affecting smog chamber experiments, especially with chambers made of Teflon film. In this work, the aerosol wall loss was investigated in 2.5 and $5.8-m^3$ cubic-shaped Teflon film chambers filled with ambient air. The natural change in the particle size distribution was measured using a scanning mobility particle sizer in a dark environment. The rate of aerosol wall loss was obtained from the deposition theory suggested by Crump and Seinfeld (1981). The measured rates of aero-sol wall loss were In a good agreement with the theoretical and experimental values given by McMurry and Rader (1985), implying that the electrostatic effect enhances particle deposition on the chamber wall. The significance of aerosol wall loss correction was demonstrated with the photochemical reaction experiments using the ambient air.

Automated Determination of SOx in Air by Diffusion Scrubber-lon Chromatography (확산포집-이온크로마토그래프법을 이용한 대기중 SOx의 자동정량)

  • 이용근;이동수;백선영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.307-313
    • /
    • 1995
  • An automatic method is developed for the determination of SOx in atmosphere. The method involves SOx sampling in diffusion scrubber followed by ion chromatographic analysis. Filtered air is withdrawn at 1.8.ell./min through a diffusion scrubber of which inner tube is made of PTFE(Gore-tex) membrane tubing. 1mM $H_{2}$ $O_{2}$ is used as absorbing solution so that SOx is oxidized to S $O_{4}$$^{2-}$. The scrubbered solution is automatically injected into ion chromatograhpy eith conductivity detection for sulphate determination. Replacement of commonly used polyproplene membrane with PTFE gives several merits such as easy preparation of diffusion scrubber, better collection efficiency. No measurable memory effect is experienced, and this isin contrast to previous work for ammonia. Detection limit of this method defined by three times standard deviation is 0.56ppbv. The precision is 0.4% RSD at SOx concentration of 7.3ppbv Results for Seoulatmosphere ate presented.

  • PDF

A Study on the Downward Filteration Movement, the Dust Collection and Filteration Plane Constitution by the use of Infinity (무한대를 이용하는 여과평면 구성 및 하향 여과공기 거동조성과 최적집진에 관한 연구)

  • 정동백
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.373-375
    • /
    • 1995
  • In order to turn the Bag Filter to the Purse Filter, the past system that the adverse reason is removed, the input of synthetic materiality of dust and air is placed down, and the output is placed up has been improved so that any adverse effect shall not be raised. The form of filteration mechanism is changed from a cylinder from, and the dust and air is mixed to make the entry velocity and one person can velocity of the mixed materiality become lower by the use of infinity, and the reception of filteration mechanism has been made reasonably. The dust separated from the filteration mechanism is desceded down, snd the mixde materiality is ascended up. So, a cross point is formed, and a collision and a friction is occurred from its process, and at its result, dust is scattered to stick to a filter cloth, therefore, the loss of pressure shall ont be appeared by cause of the increase of dust-loading.

  • PDF

The effect of RF electric fields from an atmospheric micro-plasma needle device on the death of cells (침형 상압 마이크로 플라즈마 장치에서 발생하는 전기장이 세포 사멸에 미치는 효과)

  • Yoon, Hyun-Jin;Shon, Chae-Hwa;Kim, Gyoo-Cheon;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2249-2254
    • /
    • 2008
  • A non-thermal micron size plasma needle is applicable for medical treatment because it includes radicals, charged particles, ultraviolet emission, and strong electric fields. The electric fields around the plasma needle device driven by a radio frequency wave are investigated in order to calculate the power delivered to the cell. A commercial multi-physics code, CFD-ACE, was utilized for the calculation of electric fields for the optimization of the needle structure. The electric field and energy absorption profiles are presented with the variation of the device structure and the distance between the needle and tissues. The living tissues effectively absorb the radio frequency power from the plasma needle device with the covered pyrex structure.

Atmospheric pressure plasma deposition of $SiO_X$ thin films by direct-Type pin-to-plate dielectric barrier discharge for flexible displays

  • Gil, Elly;Lee, June-Hee;Kim, Yang-Su;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1483-1485
    • /
    • 2009
  • Silicon dioxide ($SiO_2$) thin films were deposited using a modified DBD called a "pin-to-plate-type DBD" in order to generate high-density plasmas with a gas mixture of PDMS/$O_2$. The effect of the gas mixture on the physical and chemical properties of $SiO_2$ deposited by the pin-to-plate-type DBD with the mixture of PDMS/$O_2$ was investigated.

  • PDF

Constitution and Operation of the 25 kW Molten Carbonate Fuel Cell Power Generation System for Power Utility (25 kW급 전력사업용 MCFC 발전시스템 구성 및 운전평가)

  • Lim, Hee-Chun;Ahn, Kyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.687-689
    • /
    • 2000
  • Molten Carbonate Fuel Cell (MCFC) with high electrical efficiency and low environmental effect has been developed for the commercial application of power generation fields. Recently we have built a 25 kW molten carbonate fuel cell power generation system and tested it. The MCFC system is composed of diverse peripheral units such as reformer, pre-heater, water purifier. electrical loader, gas supplier, and recycling systems. The stack itself was made of 40 cells of $6.000 cm^2$ area each. The stack showed an output of 28.6 kW power and a reliable performance at atmospheric operation. while in pressurized operation the stack showed an output 25.6 kW lower than the atmospheric operation. The reason of lower performance of pressurized operation was caused from a gas cross over shown in few cells in the stack.

  • PDF

Pulse Broadening of Optical Pulse Propagated through the Turbulent Atmosphere (교란대기를 통해 전송되는 광 펄스의 퍼짐에 관한 연구)

  • 정진호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • When an optical pulse is propagated through the atmosphere space, it is attenuated and broadened by the effect of atmospheric turbulence. This pulse broadening is occurred by the fluctuation in the arrival time of pulse at an optical receiver. In digital optical communication, the attenuation is important factor but the pulse broadening is more important. In this paper, thus, we will find the broadening of pulse propagated through the turbulent atmosphere, present it as the function of the structure constant for the refractive index fluctuation, and simulate it to the turbulent strength and the transmission length.

Combustion Characteristics of a 1-Butanol Gel Fuel Droplet in Atmospheric Pressure Condition (상압조건에서 1-부탄올 젤 연료액적의 연소특성)

  • Nam, Siwook;Kim, Hyemin
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Combustion characteristics of a 1-butanol gel fuel were studied in atmospheric pressure condition. The butanol gel fuel was manufactured by adding hydroxypropyl-methyl cellulose (HPMC) as a gellant and the effect of the gellant concentration was observed. The combustion process of a single butanol gel droplet was divided into 3 stages including droplet heating, microexplosion, and gellant combustion. The flame was distorted compared to butanol + water mixture because of micro-explosion during the combustion. Increase of gellant concentration delayed the droplet ignition, but the combustion rate was improved due to the mass ejection during the micro-explosion.