• Title/Summary/Keyword: Atmospheric Effect

Search Result 1,587, Processing Time 0.033 seconds

A study of the performance improvement of atmospheric optical communication for realization of optical satellite communication and optical radio LAN (광위성 통신 및 광무선 LAN의 구현을 위한 대기 광통신 성능향상에 관한 연구)

  • Kim, Yung-Kwon;Jung, Jin-Ho;Kim, Jae-Pyung;Kim, In-Ho;Hong, Kwon-Eui;Han, Jong-Seok
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.138-155
    • /
    • 1997
  • Wireless optical communication is able to obtain high antenna gain as well as utilize to transmit the high-speed information with large capacity than the RF communication. However, the propagation path (atmosphere) is considered as an attenuator occured turbulence, absorption and scattering. These undesired phenomena diminish the amount of light that is collected at the receiver. To evaluate the effect of the atmospheric turbulance and scattering, this paper perform the ground-to-ground wireless optical LAN experiment by using the (2,1,6) convolutional coder and Viterbi decoder, and analyze numerically the earth-station antenna diameter due to the propagation path condition and upstream/downstream link.

  • PDF

An Analysis of Aerosols Impacts on the Vertical Invigoration of Continental Stratiform Clouds (에어로솔의 대륙 층운형 구름 연직발달(Invigoration)에 미치는 영향 분석)

  • Kim, Yoo-Jun;Han, Sang-Ok;Lee, Chulkyu;Lee, Seoung-Soo;Kim, Byung-Gon
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • This study examines the effect of aerosols on the vertical invigoration of continental stratiform clouds, using a dataset of Atmospheric Radiation Measurement (ARM) Intensive Operational Period (IOP, March 2000) at the Southern Great Plains (SGP) site. To provide further support to our observation-based findings, the weather research and forecasting (WRF) sensitivity simulations with changing cloud condensation nuclei (CCN) concentrations have been carried out for the golden episode over SGP. First, cross correlation between observed aerosol scattering coefficient and cloud liquid water path (LWP) with a 160-minutes lag is the highest of r = 0.83 for the selected episode, which may be attributable to cloud vertical invigoration induced by an increase in aerosol loading. Modeled cloud fractions in a control run are well matched with the observation in the perspective of cloud morphology and lasting period. It is also found through a simple sensitivity with a change in CCN that aerosol invigoration (AIV) effect on stratiform cloud organization is attributable to a change in the cloud microphysics as well as dynamics such as the corresponding modification of cloud number concentrations, drop size, and latent heating rate, etc. This study suggests a possible cloud vertical invigoration even in the continental stratiform clouds due to aerosol enhancement in spite of a limited analysis based on a few observed continental cloud cases.

Numerical Study on the Impact of SST Spacial Distribution on Regional Circulation (상세 해수면 온도자료의 반영에 따른 국지 기상정 개선에 관한 수치연구)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.304-315
    • /
    • 2009
  • Numerical simulations were carried out to understand the effect of Sea Surface Temperature (SST) spatial distribution on regional circulation. A three-dimensional non-hydrostatic atmospheric model RAMS, version 6.0, was applied to examine the impact of SST forcing on regional circulation. New Generation Sea Surface Temperature (NGSST) data were implemented to RAMS to compare the results of modeling with default SST data. Several numerical experiments have been undertaken to evaluate the effect of SST for initialization. First was the case with NGSST data (Case NG), second was the case with RAMS monthly data (Case RM) and third was the case with seasonally averaged RAMS monthly data (Case RS). Case NG showed accurate spatial distributions of SST but, the results of RM and RS were $3{\sim}4^{\circ}C$ lower than buoy observation data. By analyzing practical sea surface conditions, large difference in horizontal temperature and wind field for each run were revealed. Case RM and Case RS showed similar horizontal and vertical distributions of temperature and wind field but, Case NG estimated the intensity of sea breeze weakly and land breeze strongly. These differences were due to the difference of the temperature gradient caused by different spatial distributions of SST. Diurnal variations of temperature and wind speed for Case NG indicated great agreement with the observation data and statistics such as root mean squared error, index of agreement, regression were also better than Case RM and Case RS.

Effect of Inactivating Salmonella Typhimurium in Raw Chicken Breast and Pork Loin Using an Atmospheric Pressure Plasma Jet

  • Kim, Hyun-Joo;Yong, Hae In;Park, Sanghoo;Kim, Kijung;Bae, Young Sik;Choe, Wonho;Oh, Mi Hwa;Jo, Cheorun
    • Journal of Animal Science and Technology
    • /
    • v.55 no.6
    • /
    • pp.545-549
    • /
    • 2013
  • The optimal conditions for applications of an atmospheric pressure plasma (APP) jet for the inactivation of Salmonella Typhimurium in chicken breast and pork loins were investigated. APP jet treatment for 10 min (versus 5 minutes) showed a higher inactivation of S. Typhimurium in an agar plate, with the best effect at a distance of 20 mm. A treatment on both sides (both-side treatment) for 2.5 + 2.5 min showed a greater inhibition on S. Typhimurium growth compared to single-side treatment for 5 min, with reduction levels of 0.66 log CFU/g in chicken breast and 1.33 log CFU/g in pork loin, respectively. However, there was no significant difference between single-side treatment for 10 min and both-side treatment for 5 + 5 min in chicken breasts and pork loin samples. In conclusion, APP jet treatment conditions, including distance, time, and direction, may affect the inactivation efficiency of S. Typhimurium. In this experiment, distance of 20 mm and both-side treatment were the best conditions. Therefore, the optimal APP jet treatment conditions were evaluated to maximize its practical efficiency.

Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation (구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험)

  • Kim, Ah-Hyun;Yum, Seong Soo;Chang, Dong Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.

Radar Cross Section Reduction by Planar Array of Dielectric Barrier Discharge Plasma under Atmospheric Pressure (평면 배열 유전체 장벽 방전 플라즈마 발생기의 대기압에서의 레이다 단면적 감소 효과)

  • Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.646-652
    • /
    • 2017
  • The effect of plasma on mono-static radar cross section under atmospheric pressure is demonstrated when the dielectric barrier discharge actuator has plasma layer. The volume of plasma layer is increased by using planar array of electrodes. Because the incident wave has electric field which is perpendicular to the electrode array, the undesired effect on radar cross section caused by structure of plasma actuator is minimized. In experiments, mono-static radar cross section is measured at the frequencies from 2 GHz to 25 GHz. The generated plasma reduces the radar cross section at frequencies above 18 GHz, and the amount of reduction reaches to 8 dB in maximum. The reduction can be controlled by changing the peak-to-peak voltage from high voltage generator. The result shows the possibility of plasma as a flexible radar cross section controller.