• 제목/요약/키워드: Atmospheric Effect

검색결과 1,587건 처리시간 0.028초

Local Surface Ground Temperature based on Energy Balance Model with the use of GRID/GIS, Remote Sensed and Meteorological Station Data

  • Ha, Kyung-Ja;Shin, Sun-Hee;Oh, Hyun-Mi;Kim, Jae-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.63-65
    • /
    • 2003
  • The purpose of the study is to produce the surface ground temperature diagnostically using surface EBM with the use of GRID model in Geographic Information Systems (GIS). Certain characteristics have been analyzed for local slope effect, coastal effect and influence of high orographic aspect on the surface ground temperature. We present discussions on the meteorological responsibility for their temperature. The derived surface ground temperatures can be provided for comparison with those from satellite-based observ ation.

  • PDF

서울시 대기오염물질이 마우스태자 간조직 세포의 소핵출현에 미치는 經胎盤 효과 (Tranceplacental Effect of Air Pollutants in Seoul to inducing Micronuclei from Polychromatic Erythrocytes in Mouse Fetal Liver)

  • 송동빈;김수한;김영환
    • 한국대기환경학회지
    • /
    • 제6권1호
    • /
    • pp.111-117
    • /
    • 1990
  • To investigate the transplacental cytogenic effect of air pollutants the authors collected samples from Shinchon, Guro, Banpo and Jungnung-dongs in winter season. The air filters were extracted by mixture of benzene and ethanol, then a certain amount of extracted sustance was injected to pregnant mice at 16th day of gestation. From the fetal liver emulsion polychromatic erythrocytes were collected and stained with Giemsa solution. The cytogenic effect was evaluated by micronucleus test by which numbers of polychromatic erythrocytes containing microunclei (MNPCE) per 1, 000 polychromatic erythrocytes could be counted.

  • PDF

대기확산의 수치모의에서 SST 효과 (SST Effect upon Numerical Simulation of Atmospheric Dispersion)

  • 이화운;원경미;조인숙
    • 한국대기환경학회지
    • /
    • 제15권6호
    • /
    • pp.767-777
    • /
    • 1999
  • In the coastal region air flow changes due to the abrupt change of surface temperature between land and sea. So a numerical simulation for atmospheric flow fields must be considered the correct fields of sea surface temperature(SST). In this study, we used variables such as latent heat flux, sensible heat flux, short and long wave radiation of ocean and atmosphere which exchanged across the sea surface between atmosphere and ocean model. We found that this consideration simulated the more precise SST fields by comparing with those of the observated results. Simulated horizontal SST differences in season were 2.5~4$^{\circ}C$. Therefore we simulated the more precise atmospheric flow fields and the movement and dispersion of the pollutants with the Lagrangian particle dispersion model. In the daytime dispersion pattern of the pollutants emitted from ship sources moved toward inland, in the night time moved toward sea by land/sea breeze criculation. But air pollutants dispersion can be affected by inland topography, especially Yangsan and coastal area because of nocturnal wind speed decrease.

  • PDF

A spectroscopic study of the effect of humidity on the atmospheric pressure helium plasma jets

  • Han, Duksun
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1375-1380
    • /
    • 2018
  • Atmospheric-pressure plasma has a great potential in many applications due to its simplicity rather than low pressure plasmas. In material processing, biomedical applications, and many other applications, the input power, gas flow rate, and the geometry of electrode have been mainly considered and studied as important external parameters of atmospheric-pressure plasma control. Besides, since the atmospheric-pressure plasmas are typically generated in an open air, the relative humidity is difficult to control and can change day by day. Therefore, the relative humidity cannot be ignored for plasmas. Thus, in this work, the atmospheric-pressure plasma jet was characterized by changing relative humidity, and it was found that the increase in electron density and OH radicals are due to Penning ionization between helium metastable and water vapors at higher humidity condition.

이상적인 중립 대기경계층에서 고밀도가스의 확산예측을 위한 라그랑지안 확률모델 (A Lagrangian Stochastic Model for Dense Gas Dispersion in the Neutrally-stratified Atmospheric Surface Layer)

  • 김병구;이창훈
    • 한국대기환경학회지
    • /
    • 제21권5호
    • /
    • pp.537-545
    • /
    • 2005
  • A new dispersion model for dense gas is constructed in the Lagrangian framework. Prediction of concentration by the proposed model is compared with measure data obtained in the experiment conducted in Thorney Island in 1984. Two major effects of dense gas dispersion, gravity slumping and stratification effect, are successfully incorporated into LDM (Lagrangian dense gas model). Entrainment effect is naturally modelled by introducing stochastic dispersion model with the effect of turbulence suppression by stratification. Not only various releasing conditions but also complex terrain can be extended to, although proposed model is appropriate for flat terrain.

Effect of Nonuniform Vertical Grid on the Accuracy of Two-Dimensional Transport Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kim, Hyun-Ju;Kang, Hyun-Gyu
    • 한국지구과학회지
    • /
    • 제39권4호
    • /
    • pp.317-326
    • /
    • 2018
  • Effect of the nonuniform grid on the two-dimensional transport equation was investigated in terms of theoretical analysis and finite difference method (FDM). The nonuniform grid having a typical structure of the numerical weather forecast model was incorporated in the vertical direction, while the uniform grid was used in the zonal direction. The staggered and non-staggered grid were placed in the vertical and zonal direction, respectively. Time stepping was performed with the third-order Runge Kutta scheme. An error analysis of the spatial discretization on the nonuniform grid was carried out, which indicated that the combined effect of the nonuniform grid and advection velocity produced either numerical diffusion or numerical adverse-diffusion. An analytic function is used for the quantitative evaluation of the errors associated with the discretized transport equation. Numerical experiments with the non-uniformity of vertical grid were found to support the analysis.

현재 기후 모의실험에서 나타나는 지중해의 기후에 대한 전 지구, 원격, 지역 영향들 (Global, Remote, and Local Effects on the Mediterranean Climate in Present-Day Simulations)

  • 김고운;서경환
    • 대기
    • /
    • 제30권3호
    • /
    • pp.311-318
    • /
    • 2020
  • Impacts on the atmospheric circulation and ocean system over the Mediterranean during boreal summer are investigated using Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations (from 1911 to 2005). As the climate warms, global and remote effects lead to a strengthening in descending motion, an increase in sea surface temperature (SST) and surface dryness, but a decrease in marine primary production over the Western Mediterranean. The global effect is estimated from interannual variability over the global mean SST and the remote effect is driven by diabatic forcing generated from the South and East Asian summer monsoons. On the other hand, a local contribution leads to the strengthened descending motion and increased surface dryness over the Eastern Mediterranean, whereas the marine primary production over this region tends to increase due to possibly the urban wastewater and sewage. Our result suggests that particular attention needs to be paid to conserve the marine ecosystem over the Mediterranean.

Interaction among the East Asian Summer and Winter Monsoons, the Tropical Western Pacific and ENSO Cycle

  • Huang, Rong-Hui;Lu, Ri-Yu;Chen, Wen;Chen, Ji-Rong
    • 대기
    • /
    • 제13권2호
    • /
    • pp.47-68
    • /
    • 2003
  • Recent advances in the studies on the interaction between Asian monsoon and ENSO cycle are reviewed in this paper. Through the recent studies, the East Asian summer monsoon circulation system and the East Asian climate system have proposed. Moreover, different responses of the (winter and summer) monsoon circulation and summer rainfall anomalies in East Asia to ENSO cycle during its different stages have been understood further. Recently, the studies on the dynamical effect of East Asian monsoon on the thermal variability of the tropical western Pacific and ENSO cycle have been greatly advanced. These studies demonstrated further that ENSO cycle originates from the tropical western Pacific, and pointed out that the dynamical effect of East Asian winter and summer monsoons on ENSO cycle may be through the atmospheric circulation and zonal wind anomalies over the tropical western Pacific, which can excite the oceanic Kelvin wave and Rossby waves in the equatorial Pacific. Besides, the scientific problems in the interaction between Asian monsoon and ENSO cycle, which should be studied further in the near future, are also pointed out in this paper.