• Title/Summary/Keyword: Atmospheric Dispersion

Search Result 364, Processing Time 0.028 seconds

Estimation of Effective Dose to Residents Due to Hypothetical Accidents During Dismantling of Steam Generator

  • Kyeong-Ju Lee;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.183-191
    • /
    • 2023
  • The potential impact of hypothetical accidents that occur during the immediate and deferred dismantling of the Kori Unit 1 steam generator has been comprehensively evaluated. The evaluation includes determining the inventory of radionuclides in the Steam Generator based on surface contamination measurements, assuming a rate of release for each accident scenario, and applying external and internal exposure dose coefficients to assess the effects of radionuclides on human health. The evaluation also includes calculating the atmospheric dispersion factor using the PAVAN code and analyzing three years of meteorological data from Kori NPP to determine the degree of diffusion of radionuclides in the atmosphere. Overall, the effective dose for residents living in the Exclusion Area Boundary (EAB) of Kori NPP is predicted, an it is found that the maximum level of the dose is 0.034% compared to the annual dose limit of 1 mSv for the general public. This implies that the potential impact of hypothetical accidents on human health discussed above is within acceptable limits.

Atmospheric Dispersion of Radioactive Material according to the Local Wind Patterns around the Kori Nuclear Power Plant using WRF/HYSPLIT Model (WRF/HYSPLIT 모델을 이용한 고리원전 인근 국지바람 패턴에 따른 방사성물질 대기확산 특성)

  • An, Hye Yeon;Kang, Yoon-Hee;Song, Sang-Keun;Bang, Jin-Hee;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.81-96
    • /
    • 2015
  • The characteristics of atmospheric dispersion of radioactive material (i.e. $^{137}Cs$) related to local wind patterns around the Kori nuclear power plant (KNPP) were studied using WRF/HYSPLIT model. The cluster analysis using observed winds from 28 weather stations during a year (2012) was performed in order to obtain representative local wind patterns. The cluster analysis identified eight local wind patterns (P1, P2, P3, P4-1, P4-2, P4-3, P4-4, P4-5) over the KNPP region. P1, P2 and P3 accounted for 14.5%, 27.0% and 14.5%, respectively. Both P1 and P2 are related to westerly/northwesterly synoptic flows in winter and P3 includes the Changma or typhoons days. The simulations of P1, P2 and P3 with high wind velocities and constant wind directions show that $^{137}Cs$ emitted from the KNPP during 0900~1400 LST (Local Standard Time) are dispersed to the east sea, southeast sea and southwestern inland, respectively. On the other hands, 5 sub-category of P4 have various local wind distributions under weak synoptic forcing and accounted for less than 10% of all. While the simulated $^{137}Cs$ for P4-2 is dispersed to southwest inland due to northeasterly flows, $^{137}Cs$ dispersed northward for the other patterns. The simulated average 137Cs concentrations of each local wind pattern are $564.1{\sim}1076.3Bqm^{-3}$. The highest average concentration appeared P4-4 due to dispersion in a narrow zone and weak wind environment. On the other hands, the lowest average concentration appeared P1 and P2 due to rapid dispersion to the sea. The simulated $^{137}Cs$ concentrations and dispersion locations of each local wind pattern are different according to the local wind conditions.

Assessment of PM Emission Factors Made by Construction Machineries (건설현장의 공사장비에 의한 미세먼지 배출계수 평가)

  • Lee, Im Hack;Lee, Kyoung Bin;Kim, Jin Sik;Kim, Shin Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.311-318
    • /
    • 2014
  • The goles of this study were that we calculated the difference between the emission factors currently used officially and the emission factors that calculated by atmospheric dispersion modeling results and actual field measurements of dust concentrations and that we investigated how we applied to the emission factors appropriate to the reality in Korea. At the results, we calculated the Business As Usual ambient dust concentration concerning U.S. EPA method emissions, and we thought that the emission reduction efficiency had to be 99.7% if the ambient dust concentration that measured in this study could be satisfied. In other words, U.S. EPA dust emission calculation method is very overestimated than reality, so it is important that our country obtain reliable construction site dust emissions estimation methods by continuous researches.

Formation and Dispersion of Nitric Acid Vapor from Stack Flue Gas

  • Park, Mi Jeong;Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.96-107
    • /
    • 2014
  • Extreme recovery of the thermal energy from the combustion of flue gas may bring about early gas condensation resulting in the increased formation of nitric acid vapor. The behavior of the nitric acid formed inside the stack and in the atmosphere was investigated through a computer-aided simulation in this study. Low temperatures led to high conversion rates of the nitrogen oxide to nitric acid, according to the Arrhenius relationship. Larger acid plumes could be formed with the cooled flue gas at $40^{\circ}C$ than the present exiting gas at $115^{\circ}C$. The acid vapor plume of 0.1 ppm extended to 25 m wide and 200 m high. The wind, which had a seasonal local average of 3 m/s, expanded the influencing area to 170 m along the ground level. Its tail stretched 50 m longer at $40^{\circ}C$ than at $115^{\circ}C$. The emission concentration of the acid vapor in the summer season was a little lower than in the winter. However, a warm atmosphere facilitated the Brownian motion of the discharged flue gas, finally leading to more vigorous dispersion.

A Numerical Experiments on the Atmospheric Circulation over a Complex Terrain around Coastal Area. Part II : (연안부근 복잡지형의 대기유동장 수치실험 II -부산광역지역에 대한 국지순환모형의 적용-)

  • 김유근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.151-158
    • /
    • 2000
  • Since Pusan metropolitanarea where is composed complex terrain is connected to sea the sea-land breeze circulation and the mountain-valley circulation are apt to form A regional scale circulation system is formed at a region which has complex terrain because of curves of its and affect to the dispersion and advection of air pollutants. LCM Local Circulation Model which a propriety was verified described that sea breeze and valley wind at the daytime and land breeze and mountain wind at the nighttime were well devellped over the Pusan metropolital area. Next for the investigation of accuracy of simulated results an observed value at Kae-Kum and Su-Young on the pusan metropolitan area were compared with it at those points. From the comparison of the temperature and horizontal velocity between the results of LCM and an observed values they have a similar trend of a diurnal variation. For the prediction of dispersion and transportation of air pollutants the wind field should be calculated with high accuracy. A numerical simulation using LCM can provide more accuracy results around Pusan metropolitan area.

  • PDF