• Title/Summary/Keyword: Atmosphere boundary layer

Search Result 102, Processing Time 0.026 seconds

Sensitivity Evaluation of Wind Fields in Surface Layer by WRF-PBL and LSM Parameterizations (WRF 모델을 이용한 지표층 바람장의 대기경계층 모수화와 지면모델 민감도 평가)

  • Seo, Beom-Keun;Byon, Jae-Young;Choi, Young-Jean
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.319-332
    • /
    • 2010
  • Sensitivity experiments of WRF model using different planetary boundary layer (PBL) and land surface model (LSM) parameterizations are evaluated for prediction of wind fields within the surface layer. The experiments were performed with three PBL schemes (YSU, Pleim, MYJ) in combination with three land surface models (Noah, RUC, Pleim). The WRF model was conducted on a nested grid from 27-km to 1-km horizontal resolution. The simulations validated wind speed and direction at 10 m and 80 m above ground level at a 1-km spatial resolution over the South Korea. Statistical verification results indicate that Pleim and YSU PBL schemes are in good agreement with observations at 10 m above ground level, while the MYJ scheme produced predictions similar to the observed wind speed at 80 m above ground level. LSM comparisons indicate that the RUC model performs best in predicting 10-m and 80-m wind speed. It is found that MYJ (PBL) - RUC (LSM) simulations yielded the best results for wind field in the surface layer. The choice of PBL and LSM parameterization will contribute to more accurate wind predictions for air quality studies and wind power using WRF.

An Ocean - Atmosphere Coupled Model for the Study of ENSO (해양-대기 결합수치모형을 이용한 ENSO 연구)

  • 안중배
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.129-140
    • /
    • 1994
  • An intermediate atmosphere-ocean coupled model appropnate for the study of El Nino has been developed. The model is not only economic to use but also contains several most important physical processes. The geometrical effects which were not confided in the previous intermediate model study of Ahn (1990), are included in the model for more realistic simulation of the event. The results show that the individual models respond appropriately to the given boundary conditions. At the same time, in the coupled model experiment, ENSO-like oceanic and atmospheric anomalies are also well simulated under an external triggering similar to the initiation forcing of ENSO. It is expected that this type of model can be effectively used for the. study and simulation of El Nido. More improvement of modeling may be Possible after inclusion of subsequent processes such as inclusion of ocean mixed layer dynamics.

  • PDF

Study of the Reaction between the Dielectric and the Electrode during the Manufacturing of the Ceramic Capaciitor (요업콘덴사 제조에 있어서의 과전체와 전기물질간의 반응검사)

  • 김기호
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.1
    • /
    • pp.60-66
    • /
    • 1984
  • During the metallization in the manufacturing of the ceramic capacitor at the boundary layer between Pd or Pt electrode and $BaTiO_3$-dielectric reactions were analysed. For the study of the reaction Electron Spin Resonance (ESR) Method was used. With the aid of ESR an increased of the concentration of the paramagnetic $Ti^{3+}$-Centers on the metallizing process could be seen. It meaned a reduction effect although the metallization was accomplished under oxidation atmosphere. Therefore it could be regarded as a reaction at the boundary layer. In order to investigate the reaction ad double octahedral model was compared and the increase of the $Ti^{3+}$-concentration was studied.

  • PDF

MHD WAVES IN A STRATIFIED VISCOUS SOLAR ATMOSPHERE

  • KUMAR, NAGENDRA;KUMAR, ANIL;MURAWSKI, K.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.53-55
    • /
    • 2015
  • We study MHD wave propagation in a gravitationally stratified isothermal viscous atmosphere of the Sun, permeated by a uniform magentic field. We perform numerical simulations by launching a slow wave on the upper boundary. The driven slow wave propagates down from low-${\beta}$ to high-${\beta}$ plasma across the region where the plasma ${\beta}$ is unity. It is found that mode conversion takes place at $z{\approx}-1.8$ in the layer ${\beta}{\approx}1$. The amplitudes of horizontal and vertical velocites are smaller than those obtained in the absence of viscosity.

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

Efficiency Improvement of Polycrystalline Silicon Solar Cells using a Grain boundary treatment (결정입계 처리에 따른 다결정 실리콘 태양전지의 효율 향상)

  • 김상수;김재문;임동건;김광호;원충연;이준신
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1034-1040
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. Grain boundaries acted as potential barriers as well as recombination centers for the photo-generated carriers. To reduce these effects of the grain boundaries we investigated various influencing factors such as emitter thickness thermal treatment preferential chemical etching of grain boundaries grid design contact metal and top metallization along boundaries. Pretreatment in $N_2$atmosphere and gettering by POCl$_3$and Al were performed to obtain multicrystalline silicon of the reduced defect density. Structural electrical and optical properties of slar cells were characterized before and after each fabrication process. Improved conversion efficiencies of solar cell were obtained by a combination of pretreatment above 90$0^{\circ}C$ emitter layer of 0.43${\mu}{\textrm}{m}$ Al diffusion in to grain boundaries on rear side fine grid finger top Yb metal and buried contact metallization along grain boundaries.

  • PDF

Laboratory Experimentals and Numerical Analysis for Development of a Atmospheric Mixed Layer (대기 혼합층 발달 과정의 모형 실험과 수치 해석)

  • 이화운
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.17-26
    • /
    • 1993
  • The layer that is directly influenced by ground surface is called the atmospheric boutsdary layer in comparison with the free atmosphere of higher layer. In the boundary layer, the changes of wind, temperature and coefficient of turbulent diffusion in altitude are large and have great influences an atmospheric diffusion. The purpose of this paper is to express the structure and characteristics of development of mixed layer by using laboratory experiment and numerical simulation. Laboratory experiment using water tank are performed that closely simulate the process of break up of nocturnal surface inversion above heated surface and its phenomena are analyzed by the use of horizontally averaged temperature which is observed. The result obtained from the laboratory experiment is compared with theoretical ones from ; \textsc{k}-\varepsilon numerical model. The results are summarized as follows. 1) The horizontally averaged temperature was found to vary smoothly with height and the mixed layer developed obviously being affected by the convection. 2) The mean height of mixed layer may be predicted as a function of time, knowing the mean initial temperature gradient. The experimental values are associated well with the theoretical values computed for value of the universal constant $C_r$= 0.16, our $C_r$ value is little smaller than the value found by Townsend and Deardoru et al.

  • PDF

Surface Reoxidation Mechanism and Electrical Properites of SBLC in $BaTiO_3$ System ($BaTiO_3$계 SBLC의 표면 재산화 형성 기구 및 전기적 성질)

  • 이형규;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.55-60
    • /
    • 1986
  • A mechanism for formation of surface reoxidation layer in Surface Boundary Layer Capacitor (SBLC) has been studied. SBLC were prepared by reduction of $BaTiO_3$ doped with $Bi_2O_3$ and electrode firing of silver paste containing $Bi_2O_3$ The apparent dielectric constant was in the order of $10^5$ and the insulation resistance larger than $10^6$$\Omega$ It can be expected that $Bi_2O_3$ dopant in $BaTiO_3$ plays the role of inhibition of grain growth and decreasing the resistivity of $BaTiO_3$. In order to confirm the process of surface reoxidation layer effects of atmosphere and annealing time in electrode sintering were investigated.

  • PDF

Effects of Physical Parameterizations on the Simulation of a Snowfall Event over Korea Caused by Air-mass Transformation (기단변질형 한반도 강설 모의에 있어서 물리과정 모수화 과정의 효과)

  • Seol, Kyung-Hee;Hong, Song-You
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.203-213
    • /
    • 2006
  • The objective of this paper is to investigate the effects of physical parameterization on the simulation of a snowfall event over Korea caused by air-mass transformation by using the PSU/NCAR MM5. A heavy snowfall event over Korea during 3-5 January 2003 is selected. In addition to the control experiments employing simple-ice microphysics scheme, MRF PBL scheme, and original surface layer process, three consequent physics sensitivity experiments are performed. Each experiment exchanges microphysics (Reisner Graupel), boundary layer (YSU PBL) schemes, and revised surface layer process with a reduced thermal roughness length for the control run. The control run reproduces an overall pattern of snowfall over Korea, but with a high bias by a factor of about 2. As revealed in the previous studies, the cloud microphysics and PBL parameterizations do not show a significant sensitivity for the case of snowfall. A more sophisticated cloud processes does not reveal a discernible effect on the simulated snowfall. Further, high bias in snowfall is exaggerated when a more realistic PBL scheme is employed. On the other hand, it is found that the revised surface layer process plays a role in improving the prediction of snowfall by reducing it. Thus, it is found that a realistic design of surface layer physics in mesoscale models is an important factor to the reduction of systematic bias of the snowfall over Korea that is caused by air-mass transformation over the Yellow sea.

Study on Thermal Property in Urban Area - Part 1 : Experimental Analysis for Predicting Methodology of Thermal Property in Urban Area - (도심지의 온열성상에 관한 연구 -제1보 도심지 온열환경 예측모델을 위한 실측조사-)

  • Son Won-Tug;Lee Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.984-989
    • /
    • 2004
  • Significant air temperature increases in urban areas is well known as the heat island phenomenon in a global scale. Therefore, we propose numerical model in order to analyze quantitative effects of building environmental factors on the heat island phenomenon in urban area. In this paper, thermal property of upper atmosphere is experimentally investigated for Sakae, Nagoya Japan. In conclusion, it was confirmed that the boundary layer of a urban canopy existed near the altitude of 139 m.