• Title/Summary/Keyword: AtBI-1

Search Result 1,699, Processing Time 0.028 seconds

Preparation and Electrical Conductivity of CuO-Bi2O3-V2O5 Glass for Solid State Batteries

  • Jeong, Dong-Jin;Park, Hee-Chan;Lee, Heun-Soo;Park, Chan-Young
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.183-188
    • /
    • 1999
  • The crystallization behavior and electrical conductivity of the $CuO-Bi_2O_3-V_2O_5$ glasses with various CuO content were investigated. The glass formation regin was 0~20 mol% Bi2O3, 5~55 mol% CuO, and 30~90 mol% $V_2O_5$ with Tg=$275^{\circ}C$~$290^{\circ}C$. Among glasses with various compositions, the 31CuO-$14Bi_2O_3-55V_2O_5$ (mol%) glass heat-treated at $358^{\circ}C$ for 8 h showed the highest conductivity of ~ at room temperature. The heat-treated glasses increased in electrical conductivity by the order of 104 compared to non heat-treated glass. The linear relationship between 1n($\sigma$T)and $T^{-1}$ indicated that electrical conduction in the 31CuO-$14Bi_2O_3-55V_2O_5$ (mol%) glass occurred by a small polaron hopping.

  • PDF

Structure and Magnetic Properties of Ho and Ni Co-doped BiFeO3 Ceramics

  • Hwang, J.S.;Yoo, Y.J.;Park, J.S.;Kang, J.H.;Lee, K.H.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.183-183
    • /
    • 2014
  • Recently, multiferroic materials gain much attention due to their fascinating fundamental physical properties. These materials offer wide range of potential applications such as data storage, spintronic devices and sensors, where both electronic and magnetic polarizations can be coupled. Among single-phase multiferroic materials, $BiFeO_3$ is typical because of the room-temperature magnetoelectric coupling in view of long-range magnetic- and ferroelectric-ordering temperatures. However, $BiFeO_3$ is well known to have large leakage current and small spontaneous polarization due to the existence of oxygen vacancies and other defects. Furthermore the magnetic moment of pure $BiFeO_3$ is very weak owing to its antiferromagnetic nature. Recently, various attempts have been performed to improve the multiferroic properties of $BiFeO_3$ through the co-doping at the A and the B sites, by making use of the fact that the intrinsic polarization and magnetization are associated with the lone pair of $Bi^{3+}$ ions at the A sites and the partially-filled 3d orbitals of $Fe^{3+}$ ions at the B sites, respectively. In this study, $BiFeO_3$, $Bi_{0.9}Ho_{0.1}FeO_3$, $BiFe_{0.97}Ni_{0.03}O_3$ and $Bi_{0.9}Ho_{0.1}Fe_{0.97}Ni_{0.03}O_3$ bulk compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Ho_2O_3$, $Fe_2O_3$ and $NiO_2$ powders with the stoichiometric proportions were mixed, and calcined at $500^{\circ}C$ for 24 h to produce the samples. The samples were immediately put into an oven, which was heated up to $800^{\circ}C$ and sintered in air for 1 h. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent and temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer and superconducting quantum-interference device.

  • PDF

Improved Physical Properties of Ni-doped $BiFeO_3$ Ceramic

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.250-250
    • /
    • 2012
  • Recently, multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and potential technological applications in magnetic/ferroelectric data storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3$, in particular, has received considerable attention because of its very interesting magnetoelectric properties for application to spintronics. Enhanced ferromagnetism was found by Fe-site ion substitution with magnetic ions. In this study, $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Fe_3O_4$ and NiO powders were mixed with the stoichiometric proportions, and calcined at $450^{\circ}C$ for 24 h to produce $BiFe_{1-x}Ni_xO_3$. Then, the samples were directly put into the oven, which was heated up to $800^{\circ}C$ and sintered in air for 20 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The Raman measurements were carried out with a Raman spectrometer with 514.5-nm-excitation Ar+-laser source under air ambient condition on a focused area of $1-{\mu}m$ diameter. The field-dependent magnetization and the temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The x-ray diffraction study demonstrates the compressive stress due to Ni substitution at the Fe site. $BiFe_{0.95}Ni_{0.05}O_3$ exhibits the rhombohedral perovskite structure R3c, similar to $BiFeO_3$. The lattice constant of $BiFe_{0.95}Ni_{0.05}O_3$ is smaller than of $BiFeO_3$ because of the smaller ionic radius of Ni3+ than that of Fe3+. The field-dependent magnetization of $BiFe_{0.95}Ni_{0.05}O_3$ exhibits a clear hysteresis loop at 300 K. The magnetic properties of $BiFe_{0.95}Ni_{0.05}O_3$ were improved at room temperature because of the existence of structurally compressive stress.

  • PDF

Magnetic and Structural Properties of MnBi1-xTix Alloys

  • Zhang, Suyin;Zhang, Pengyue;Jiang, HuanChang;Shi, Yaojun;Yu, Nengjun;Ge, Hongliang
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.205-209
    • /
    • 2014
  • $MnBi_{1-x}Ti_x$ (x = 0, 0.4, 0.7, 1) alloys were prepared by arc-melting, followed by heat treatment. X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) were used to measure and investigate the phase structure and magnetic properties. The temperature dependent magnetization curves indicate that the phase transitions between LTP and HTP MnBi occur with heating or cooling in $MnBi_{1-x}Ti_x$ ($x{\leq}0.7$) samples. However, MnTi samples are in $Mn_2Ti$ single-phase, with very low magnetic properties. Furthermore, the coercivity exhibits a positive temperature coefficient. The results show that the optimal content of Ti for the coercivity of $MnBi_{1-x}Ti_x$ alloy is x = 0.4. For MnBi sample, the coercivity reaches a maximum value of 1.13 T at 550 K. However, the remanence and energy product show apparent decrease with the addition of Ti in $MnBi_{1-x}Ti_x$ alloys.

Microstructure and Electric Properties of Ferroelectric SrBi$_2$Ta$_2$O$_9$ Thin Films Deposited by Modified Rf Magnetron Sputtering Technique (Modified Rf Magnetron Sputtering에 의해 Pt/Ti/SiO$_2$/Si 기판위에 제조된 강유전체 SrBi$_2$Ta$_2$O$_9$ 박막의 미세구조 및 전기적 특성 연구)

  • 양철훈;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.472-478
    • /
    • 1998
  • Ferroelectric SrBi2Ta2O9(SBT) films were deposited on Pt/Ti/SiO2/Si substrates at 50$0^{\circ}C$ using a sintered SBT target Bi and Ta targets by modified rf magnetron sputtering and then were annealed at 80$0^{\circ}C$ for 10min in oxygen ambinet(760 torr) The composition of the SBT films could be easily controlled using the mul-ti-targets. The film composition of {{{{ {Sr }_{0.8 } {Bi }_{2.9 } {Ta}_{2.0 } {O }_{9 } }} was obtained with SBTd sputtering power of 100 W Bi of 25W and Ta of 10 W. A 250nm thick SBT films exhibited a dense and uniform microstructure and showed the remanent polarization(Pr) of 14.4 $\mu$C/cm2 and the coercive field({{{{ {E }_{c } }})of 60 kV/cm at applied voltage of 5 V. The SBT films show practically no polarization fatigue up to {{{{ {10 }_{10 } }} cycles under 5V bipolar pulse. The retention characteristics of the SBT films looked very promising and the leakage current density of the SBT films was about 1.23$\times${{{{ {10 }^{-7 } }}A/c{{{{ {m }^{2 } }} at 120kV/cm.

  • PDF

Sintering and Electrical Properties According to Sb/Bi Ratio(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3 Varistor (Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.675-681
    • /
    • 2012
  • We aimed to examine the co-doping effects of 1/6 mol% $Mn_3O_4$ and 1/4 mol% $Cr_2O_3$ (Mn:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Cr-doped ZBS, ZBS(MnCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ (also ${\beta}-Bi_2O_3$ at Sb/Bi ${\leq}$ 1.0) were detected for all of the systems. Mn and Cr are involved in the development of each phase. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 system by Mn rather than Cr doping. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(MnCr), the varistor characteristics were improved dramatically (non-linear coefficient, ${\alpha}$ = 40~78), and seemed to form ${V_o}^{\cdot}$(0.33 eV) as a dominant defect. From impedance and modulus spectroscopy, the grain boundaries can be seen to have divided into two types, i.e. one is tentatively assigned to ZnO/$Bi_2O_3$ (Mn,Cr)/ZnO (0.64~1.1 eV) and the other is assigned to the ZnO/ZnO (1.0~1.3 eV) homojunction.

Synthesis and M$\ddot{o}$ssabuer Spectroscopy Studies of $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ Nano-Particles

  • Uhm, Young Rang;Lee, Jae-Gwang;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.5 no.1
    • /
    • pp.16-18
    • /
    • 2000
  • The garnets $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ ($\chi$=0.0, 0.25, 0.5, 0.75 and 1.0) have been studied by x-rays, electron microscopy, ferromagnetic resonance, vibrating sample magnetometer and Mossbauer spectroscopy, Ultra-fine polycrystalline cubic samples have been prepared by a melt-salt routed sol-gel method. The Mossbauer spectra consist of two sets of six-line patterns corresponding to $Fe^{3+}$ at the tetrahedral 24(d) and octahedral 16(a) sites. Magnetic hyperfine fields of $Nd_{0.5}Bi_{0.5}Y_2Fe_5O_{12}$ at 12 K are found to be 548 kOe (octahedral site) and 475 kOe (tetrahedral site), respectively, It is found that Debye temperatures for the tetrahedral and octahedral sites of $Nd_{0.75}Bi_{0.25}Y_2Fe_5O_{12}$ are $\theta_{tet}=436$ K and $\theta_{oct}=285$ K, respectively, The iron ions at both sites are highly covalent ferric. The Nel temperature decreases linearly with Bi concentration, from 630 K fur $\chi$=0.0 to 600 K for $\chi$=1.0, suggesting that the superexchange interaction for the Nd-O-Fe link is stronger than that for the Bi-O-Fe link. As a consequence, the coercivity of $Nd_{1-x}Bi_xY_2Fe_5O_{12}$ drastically decreases and the magnetization remains almost constant as x increases.

  • PDF

Microstructure and Superconducting Properties of Ag-$Bi_{1.84}Pb_{0.34}Sr_{1.91}Ca_{2.03}Cu_{3.06}O_{10+{\delta}}$ Composites (Ag-$Bi_{1.84}Pb_{0.34}Sr_{1.91}Ca_{2.03}Cu_{3.06}O_{10+{\delta}}$ 복합체의 미세구조와 초전도특성)

  • 이민수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.6
    • /
    • pp.249-256
    • /
    • 2003
  • Samples with the nominal composition, Ag-$Bi_{1.84}Pb_{0.34}Sr_{1.91}Ca_{2.03}Cu_{3.06}O_{10+{\delta}}$ high $T_{c}$ superconductors containing Ag as an additive were fabricated by a solid-state reaction method. Samples with Ag of 10 wt%, 30 wt%, and 50 wt% each were sintered at $860^{\circ}C$~$870^{\circ}C$ for 24 hours. The structural characteristics, the microstructures and the critical temperature with respect to the each samples were investigated by XRD, four-prove methode, SEM and EDS respectively. The $T_{c}\;^{zero}$ of the sample with the 50 wt% Ag additive at the surface showed 94 K.

Analysis of Thermodynamics for Formation of Single Phase in $Bi_2Sr_2Ca_nCu_{n+1}O_x$ Thin Films ($Bi_2Sr_2Ca_nCu_{n+1}O_x$ 박막의 단상 형성을 위한 열역학 해석)

  • Cheon, Min-Woo;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1208-1211
    • /
    • 2003
  • High quality $Bi_2Sr_2Ca_nCu_{n+1}O_x$ superconducting thin films fabricated by using the evaporation method at various substrate temperatures, $T_{sub}$, and ozone gas pressures, $pO_3$. The correlation diagrams of the $Bi_2Sr_2Ca_nCu_{n+1}O_x$ phases with $T_{sub}$ and $pO_3$ are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 as well as Bi2212 phases come out as stable phases depending on $T_{sub}$ and $pO_3$. From these results, the thermodynamic evaluation of ${\Delta}H$ and ${\Delta}S$, which are related with Gibbs' free energy change for single Bi2212 or Bi2223 phase, was performed.

  • PDF

Electrical properties of S$SrBi_{2x}Ta_2O_9$ thin films with Bi content (Bi 함량에 따른 $SrBi_{2x}Ta_2O_9$ 박막의 전기적 특성)

  • 연대중;권용욱;박주동;오태성
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.224-230
    • /
    • 1999
  • $SrBi_{2x}Ta_2O_9$ (SBT) thin films were prepared on platinized silicon substrates by MOD process, and their ferroelectric and leakage current characteristics were investigated. The grain size of the MOD derived SBT films increased with increasing the BI/Ta mole ration. Although the SBT films with x of 0.8~1.2 were composed of the equiaxed grains, the elongated grains were also observed for the SBT films with x of 1.4 and 1.6. The SBT film with x of 1.2 exhibited the optimum ferroelectric properties of 2PR : 9.79 $\muC/\textrm{cm}^2$ and Ec : 24.2kV/cm at applied voltage of 5V. The leakage current density of the SBT films increased with increasing the BI/Ta mole ratio. With post annealing process, 2Pr and $E_c$of the SBT film with x of 1.2 increases 11.3 $\muC/\textrm{cm}^2$ and 39.6kV/cm, respectively. decrement of the leakage current density by post annealing process increased remarkably with increasing the Bi/ta mole ratio, and the SBT film with x=1.6 exhibited the lowest leakage current density after post annealing process.

  • PDF