• 제목/요약/키워드: Asymptotically Stable

검색결과 142건 처리시간 0.026초

Stabilizing Solutions of Algebraic Matrix riccati Equations in TEX>$H_\infty$ Control Problems

  • Kano, Hiroyuki;Nishimura, Toshimitsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.364-368
    • /
    • 1994
  • Algebraic matrix Riccati equations of the form, FP+PF$^{T}$ -PRP+Q=0. are analyzed with reference to the stability of closed-loop system F-PR. Here F, R and Q are n * n real matrices with R=R$^{T}$ and Q=Q$^{T}$ .geq.0 (nonnegative-definite). Such equations have been playing key roles in optimal control and filtering problems with R .geq. 0. and also in the solutions of in H$_{\infty}$ control problems with R taking the form R=H$_{1}$$^{T}$ H$_{1}$-H$_{2}$$^{T}$ H$_{2}$. In both cases an existence of stabilizing solution, i.e. the solution yielding asymptotically stable closed-loop system, is an important problem. First, we briefly review the typical results when R is of definite form, namely either R .geq. 0 as in LQG problems or R .leq. 0. They constitute two extrence cases of Riccati to the cases H$_{2}$=0 and H$_{1}$=0. Necessary and sufficient conditions are shown for the existence of nonnegative-definite or positive-definite stabilizing solution. Secondly, we focus our attention on more general case where R is only assumed to be symmetric, which obviously includes the case for H$_{\infty}$ control problems. Here, necessary conditions are established for the existence of nonnegative-definite or positive-definite stabilizing solutions. The results are established by employing consistently the so-called algebraic method based on an eigenvalue problem of a Hamiltonian matrix.x.ix.x.

  • PDF

Observer Design for A Class of UncertainState-Delayed Nonlinear Systems

  • Lu Junwei;Feng Chunmei;Xu Shengyuan;Chu Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.448-455
    • /
    • 2006
  • This paper deals with the observer design problem for a class of state-delayed nonlinear systems with or without time-varying norm-bounded parameter uncertainty. The nonlinearities under consideration are assumed to satisfy the global Lipschitz conditions and appear in both the state and measured output equations. The problem we address is the design of a nonlinear observer such that the resulting error system is globally asymptotically stable. For the case when there is no parameter uncertainty, a sufficient condition for the solvability of this problem is derived in terms of linear matrix inequalities and the explicit formula of a desired observer is given. Based on this, the robust observer design problem for the case when parameter uncertainties appear is considered and the solvability condition is also given. Both of the solvability conditions obtained in this paper are delay-dependent. A numerical example is provided to demonstrate the applicability of the proposed approach.

로봇 매니퓨레이터의 강건한 적응 슬라이딩 모드제어 (On the Robust Adaptive Sliding Mode Control of Robot Manipulators)

  • 배준경
    • 전자공학회논문지SC
    • /
    • 제38권6호
    • /
    • pp.28-36
    • /
    • 2001
  • 피드-포워드 보상부분과 불연속 제어 부분으로 구성되는 강건한 적응 슬라이딩 모드 로봇제어 알고리즘을 유도하였다. 미지의 매개변수는 실시간으로 추정되는 매개변수를 포함하는 그룹과 실시간으로 추정하지 않는 매개변수를 포함하는 그룹으로 나누어진다. 그런 다음 외란 및 실시간으로 추정하지 않는 매개변수에서의 불확실성 효과를 보상하기 위해 슬라이딩 제어 항이 토크 입력에 포함된다. 또한 매니퓨레이터 동역학 구조의 효율적인 이용으로 인하여 알고리즘은 계산이 간단하다. 매개변수 불확실성과 외부 외란의 존재에도 불구하고 제어기는 대국적 점근적으로 안정하며 추적오차가 영에 수렴함을 보여준다.

  • PDF

내부공진을 가진 보의 흡인영역 (Domains of Attraction of a Forced Beam with Internal Resonance)

  • 이원경;강명란
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1711-1721
    • /
    • 1992
  • 본 연구에서는 Nayfeh등과 이원경과 소강영은 조화가진하의 핀과 꺽쇠로 고정 된 보(hinged-clamped beam)의 강제 진동 해석을 통하여 점근적으로 안정한 정상상태 응답이 둘 이상 존재할 수 있음을 알게 되었다. 본 연구에서는 이 경우에 접근적으 로 안정한두 정상상태 응답을 구하고 이들 안정한 해로 각각 흡인되는 초기조건들의 집합인 흡인영역을 보간사상법(interpolated mapping method)과 직접 수치적분에 의해 구한 후 서로 비교하였다.

First-order Generalized Integrator Based Frequency Locked Loop and Synchronization for Three-Phase Grid-connected Converters under Adverse Grid Conditions

  • Luo, Zhaoxu;Su, Mei;Sun, Yao;Liu, Zhangjie;Dong, Mi
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1939-1949
    • /
    • 2016
  • This paper presents an alternative frequency adaptive grid synchronization technique named HDN-FLL, which can accurately extract the fundamental positive- and negative-sequence components and interested harmonics in adverse three-phase grid voltage. The HDN-FLL is based on the harmonic decoupling network (HDN) consisting of multiple first order complex vector filters (FOCVF) with a frequency-locked loop (FLL), which makes the system frequency adaptive. The stability of the proposed FLL is strictly verified to be global asymptotically stable. In addition, the linearization and parameters tuning of the FLL is also discussed. The structure of the HDN has been widely used as a prefilter in grid synchronization techniques. However, the stability of the general HDN is seldom discussed. In this paper, the transfer function expression of the general HDN is deduced and its stability is verified by the root locus method. To show the advantages of the HDN-FLL, a simulation comparison with other gird synchronization methods is carried out. Experimental results verify the excellent performance of the proposed synchronization method.

On the Design of Simple-structured Adaptive Fuzzy Logic Controllers

  • Park, Byung-Jae;Kwak, Seong-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.93-99
    • /
    • 2003
  • One of the methods to simplify the design process for a fuzzy logic controller (FLC) is to reduce the number of variables representing the rule antecedent. This in turn decreases the number of control rules, membership functions, and scaling factors. For this purpose, we designed a single-input FLC that uses a sole fuzzy input variable. However, it is still deficient in the capability of adapting some varying operating conditions although it provides a simple method for the design of FLC's. We here design two simple-structured adaptive fuzzy logic controllers (SAFLC's) using the concept of the single-input FLC. Linguistic fuzzy control rules are directly incorporated into the controller by a fuzzy basis function. Thus some parameters of the membership functions characterizing the linguistic terms of the fuzzy control rules can be adjusted by an adaptive law. In our controllers, center values of fuzzy sets are directly adjusted by an adaptive law. Two SAFLC's are designed. One of them uses a Hurwitz error dynamics and the other a switching function of the sliding mode control (SMC). We also prove that 1) their closed-loop systems are globally stable in the sense that all signals involved are bounded and 2) their tracking errors converge to zero asymptotically. We perform computer simulations using a nonlinear plant.

Structural system simulation and control via NN based fuzzy model

  • Tsai, Pei-Wei;Hayat, T.;Ahmad, B.;Chen, Cheng-Wu
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.385-407
    • /
    • 2015
  • This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. It is well known that, in general, the global asymptotic stability of the TLP subsystems does not imply the global asymptotic stability of the composite closed-loop system. Finding system parameters for stabilizing the control system is also an issue need to be concerned. In this paper, we give additional sufficient conditions for the global stabilization of a TLP nonlinear system. In particular, we consider a class of NN based Takagi-Sugeno (TS) fuzzy TLP systems. Using the so-called parallel distributed compensation (PDC) controller, we prove that this class of systems can be globally asymptotically stable. The proper design of system parameters are found by a swarm intelligence algorithm called Evolved Bat Algorithm (EBA). An illustrative example is given to show the applicability of the main result.

리튬폴리머 배터리 잔존충전용량 추정을 위한 비선형 관측기 설계 (A Nonlinear Observer Design for Estimating State-of-Charge of Lithium Polymer Battery)

  • 류석환
    • 한국지능시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.300-304
    • /
    • 2012
  • 본 논문은 리튬 폴리머 배터리 셀의 잔존충전용량을 추정하기 위한 비선형 관측기의 설계방법을 제시한다. 배터리 셀의 동적방정식은 비선형 전압원을 갖는 간단한 RC 전기회로로 모델하고 파라메터는 비선형 최적화기법을 이용하여 구한다. 관측기 이득은 제곱합 분해기법을 사용하여 오차의 동적방정식이 점근적으로 안정하고 추정오차 감소율이 설계자가 지정한 값 이하가 되도록 설계한다. 관측기의 성능을 입증하기 위하여 UDDS 전류 프로파일을 사용한 실험 데이터를 이용하여 모의실험을 수행하였다.

X-stern 배열을 가진 대형급 무인잠수정의 경로점 추적 (Waypoint Tracking of Large Diameter Unmanned Underwater Vehicles with X-stern Configuration)

  • 김도완;김문환;박호규;김태영
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.387-393
    • /
    • 2017
  • This paper focuses on a horizontal waypoint tracking and a speed control of large diameter unmanned underwater vehicles (LDUUVs) with X-stern configuration plane. The concerned design problem is converted into an asymptotic stabilization of the error dynamics with respect to the desired yaw angle and surge speed. It is proved that the error dynamics under the proposed control scheme based on the linear control and the feedback linearization can be considered as a cascade system; the cascade system is asymptotically stable if its nominal systems are so. This stability connection enables to separately deal with the waypoint tracking problem and the speed control one. By using the sector nonlinearity, the nominal system with nonlinearities is modeled as a polytopic linear parameter varying (LPV) system with parametric uncertainties. Then, sufficient linear matrix inequality (LMI) conditions for its asymptotic stabilizability are derived in the sense of Lyapunov stability criterion. An example is given to show the validity of the proposed methodology.

고해상 3차원 입자영상유속계 개발과 구 유동장 정밀해석 적용연구 (Development of High-Definition 3D-PTV and its Application to High-Precision Measurements of a Sphere Wake)

  • 황태규;도덕희
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1161-1168
    • /
    • 2005
  • A Multi-Sectional 3D-PTV algorithm was developed to reduce the calculation time of the conventional GA-3D-PTV. The hardware system of the constructed 3D-PTV system consists of two high-speed cameras ($1,024\times1,018$ pixels, 60 fps), a metal halogen lamp (400W) and a host computer. The sphere(D=30mm) is suspended in a circulating water channel $(300mm\times300mm\times1,200m)$ and Reynolds number is 1,130. About 5,000 instantaneous three-dimensional velocity vectors have been obtained by the constructed 3D-PTV system. Turbulent properties such as turbulent intensity, Reynolds stress and turbulent kinetic energy were obtained. An eigenvalue analysis was carried out using the obtained instantaneous 3D velocity vectors to get the topological relations of the asymptotically stable critical point. Two structured shells, inner shell and outer shell, were found in the sphere wake and their motions were clarified by the measured data.