• Title/Summary/Keyword: Asymptotic Method

Search Result 633, Processing Time 0.207 seconds

Updated confidence intervals for the COVID-19 antibody retention rate in the Korean population

  • Kamruzzaman, Md.;Apio, Catherine;Park, Taesung
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.45.1-45.5
    • /
    • 2020
  • With the ongoing rise of coronavirus disease 2019 (COVID-19) pandemic across the globe, interests in COVID-19 antibody testing, also known as a serology test has grown, as a way to measure how far the infection has spread in the population and to identify individuals who may be immune. Recently, many countries reported their population based antibody titer study results. South Korea recently reported their third antibody formation rate, where it divided the study between the general population and the young male youths in their early twenties. As previously stated, these simple point estimates may be misinterpreted without proper estimation of standard error and confidence intervals. In this article, we provide an updated 95% confidence intervals for COVID-19 antibody formation rate for the Korean population using asymptotic, exact and Bayesian statistical estimation methods. As before, we found that the Wald method gives the narrowest interval among all asymptotic methods whereas mid p-value gives the narrowest among all exact methods and Jeffrey's method gives the narrowest from Bayesian method. The most conservative 95% confidence interval estimation shows that as of 00:00 November 23, 2020, at least 69,524 people were infected but not confirmed. It also shows that more positive cases were found among the young male in their twenties (0.22%), three times that of the general public (0.051%). This thereby calls for the quarantine authorities' need to strengthen quarantine managements for the early twenties in order to find the hidden infected people in the population.

Confidence intervals for the COVID-19 neutralizing antibody retention rate in the Korean population

  • Apio, Catherine;Kamruzzaman, Md.;Park, Taesung
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.31.1-31.8
    • /
    • 2020
  • The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic. No specific therapeutic agents or vaccines for COVID-19 are available, though several antiviral drugs, are under investigation as treatment agents for COVID-19. The use of convalescent plasma transfusion that contain neutralizing antibodies for COVID-19 has become the major focus. This requires mass screening of populations for these antibodies. While several countries started reporting population based antibody rate, its simple point estimate may be misinterpreted without proper estimation of standard error and confidence intervals. In this paper, we review the importance of antibody studies and present the 95% confidence intervals COVID-19 antibody rate for the Korean population using two recently performed antibody tests in Korea. Due to the sparsity of data, the estimation of confidence interval is a big challenge. Thus, we consider several confidence intervals using Asymptotic, Exact and Bayesian estimation methods. In this article, we found that the Wald method gives the narrowest interval among all Asymptotic methods whereas mid p-value gives the narrowest among all Exact methods and Jeffrey's method gives the narrowest from Bayesian method. The most conservative 95% confidence interval estimation shows that as of 00:00 on September 15, 2020, at least 32,602 people were infected but not confirmed in Korea.

Uncertainty Assessment of Regional Frequency Analysis for Generalized Logistic Distribution (Generalized Logistic 분포형을 이용한 지역빈도해석의 불확실성 추정)

  • Shin, Hongjoon;Nam, Woosung;Jung, Younghun;Heo, Jun-Haeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.723-729
    • /
    • 2008
  • Confidence intervals of growth curves are calculated to assess the uncertainty of index flood method as a regional frequency analysis. The asymptotic variance of quantile estimator for the generalized logistic distribution is introduced to evaluate confidence intervals. In addition, the variances of at-site frequency estimator and regional frequency estimator are used to evaluate an efficiency index. The efficiency indexes for 14 homogeneous regions based on 378 stations show that index flood method estimators are more efficient than at-site frequency estimators. It is shown that the number of sites in a region needs to be limited for regional gain.

THE BOUNDARY ELEMENT METHOD FOR POTENTIAL PROBLEMS WITH SINGULARITIES

  • YUN, BEONG IN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1999
  • A new procedure of the boundary element method(BEM),say, singular BEM for the potential problems with singularities is presented. To obtain the numerical solution of which asymptotic behavior near the singularities is close to that of the analytic solution, we use particular elements on the boundary segments containing singularities. The Motz problem and the crack problem are taken as the typical examples, and numerical results of these cases show the efficiency of the present method.

  • PDF

Statistical Estimation for Generalized Logit Model of Nominal Type with Bootstrap Method

  • Cho, Joong-Jae;Han, Jeong-Hye
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 1995
  • The generalized logit model of nominal type with random regressors is studied for bootstrapping. In particular, asymptotic normality and consistency of bootstrap model estimators are derived. It is shown that the bootstrap approximation to the distribution of the maximum likelihood estimators is valid for alsomt all sample sequences.

  • PDF

A Study on the Calculation of Escape Frequency Factor using TSC Equation (열자격전류식을 이용한 이탈주파수인자 계산에 관한 연구)

  • 김기준;김상진;전동근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.135-138
    • /
    • 1995
  • This paper presents a method to calculate the escape frequency factor and its verification from TSC(Thermally Stimulated Current) equation and cures. To apply calculation method of ν using asymptotic estimation, it utilized two sets of TSC data with 1K interval. This method enables one to get the exact value of ν and activation energy at the same time by using computer programming. So, it regards their calculation method as a useful process to obtain the value of physical behavior.

  • PDF

Bootstrapping Logit Model

  • Kim, Dae-hak;Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.281-289
    • /
    • 2002
  • In this paper, we considered an application of the bootstrap method for logit model. Estimation of type I error probability, the bootstrap p-values and bootstrap confidence intervals of parameter were proposed. Small sample Monte Carlo simulation were conducted in order to compare proposed method with existing normal theory based asymptotic method.

Minimum Chi-square estimation and the bootstrap (최소카이제곱추정과 붓스트랩)

  • 정한영;이기원;구자용
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.2
    • /
    • pp.269-277
    • /
    • 1994
  • Bootstrap approximation is compared with ordinary asymptotic method in the context of minimum chi-square estimation through application in a real problem. Fixed interval search method is shown to be superior over a random interval search method or Newton-Raphson method. All the procedures are implemented by S-Plus functions.

  • PDF

Transient Analysis of Hybrid Systems Composed of Lumped Elements and Frequency Dependent Lossy Disributed Interconnects

  • Ichikawa, Satoshi;Shimoda, Tomokazu
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1096-1099
    • /
    • 2000
  • A method to analyze the high speed inter-connects that are composed of frequency dependent lossy distributed lines is presented. Network modeling of hybrid systems is implemented by using the modified nodal admittance matrix in the Laplace transformation domain. The network response is computed by different two methods. One method Is the asymptotic waveform evaluation (AWE) method and other is numerical Laplace inversion method. The merits and demerits of two methods are discussed by applying to several concrete illustrative networks.

  • PDF

Averaging Approach for Microchannel Heat Sinks Subjected to the Uniform Wall Temperature Condition (등온 경계 조건을 가지는 마이크로채널 히트 싱크의 열성능 해석을 위한 평균 접근법)

  • Kim, Dong-Kwon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1247-1252
    • /
    • 2004
  • The present paper is devoted to the modeling method based on an averaging approach for thermal analysis of microchannel heat sinks subjected to the uniform wall temperature condition. Solutions for velocity and temperature distributions are presented using the averaging approach. When the aspect ratio of the microchannel is higher than 1, these solutions accurately evaluate thermal resistances of heat sinks. Asymptotic solutions for velocity and temperature distributions at the high-aspect-ratio limit are alsopresented by using the scale analysis. Asymptotic solutions are simple, but shown to predict thermal resistances accurately when the aspect ratio is higher than 10. The effects of the aspect ratio and the porosity on the friction factor and the Nusselt number are presented. Characteristics of the thermal resistance of microchannel heat sinks are also discussed.

  • PDF