• Title/Summary/Keyword: Asymptotic

Search Result 2,067, Processing Time 0.022 seconds

FREE SURFACE WAVES OF A TWO-LAYER FLUID OVER A STEP

  • Choi, Jeong-Whan;Whang, Sung-Im
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.173-181
    • /
    • 2000
  • The objective of this paper is to study two dimensional steady gravitational waves on the interface between two immiscible, inviscid and incompressible fluids bounded above by a horizontal rigid boundary and below by a rigid step. A KdV equation for the first order perturbation in an asymptotic expansion can appear. However the coefficient of the KdV theory fails in that case. By a unified asymptotic method, we overcome this difficulty and derive a modified KdV equation with forcing. We find homogeneous steady solutions and present numerical solutions.

  • PDF

A NOTE ON THE SEVERITY OF RUIN IN THE RENEWAL MODEL WITH CLAIMS OF DOMINATED VARIATION

  • Tang, Qihe
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.663-669
    • /
    • 2003
  • This paper investigates the tail asymptotic behavior of the severity of ruin (the deficit at ruin) in the renewal model. Under the assumption that the tail probability of the claimsize is dominatedly varying, a uniform asymptotic formula for the tail probability of the deficit at ruin is obtained.

GLOBAL ASYMPTOTIC STABILITY FOR A DIFFUSION LOTKA-VOLTERRA COMPETITION SYSTEM WITH TIME DELAYS

  • Zhang, Jia-Fang;Zhang, Ping-An
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1255-1262
    • /
    • 2012
  • A type of delayed Lotka-Volterra competition reaction-diffusion system is considered. By constructing a new Lyapunov function, we prove that the unique positive steady-state solution is globally asymptotically stable when interspecies competition is weaker than intraspecies competition. Moreover, we show that the stability property does not depend on the diffusion coefficients and time delays.

GLOBAL STABILITY ANALYSIS FOR A CLASS OF COHEN-GROSSBERG NEURAL NETWORK MODELS

  • Guo, Yingxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1193-1198
    • /
    • 2012
  • By constructing suitable Lyapunov functionals and combining with matrix inequality technique, a new simple sufficient condition is presented for the global asymptotic stability of the Cohen-Grossberg neural network models. The condition contains and improves some of the previous results in the earlier references.

ASYMPTOTIC BEHAVIOR OF A-HARMONIC FUNCTIONS AND p-EXTREMAL LENGTH

  • Kim, Seok-Woo;Lee, Sang-Moon;Lee, Yong-Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.423-432
    • /
    • 2010
  • We describe the asymptotic behavior of functions of the Royden p-algebra in terms of p-extremal length. We also prove that each bounded $\cal{A}$-harmonic function with finite energy on a complete Riemannian manifold is uniquely determined by the behavior of the function along p-almost every curve.

QUALITATIVE ANALYSIS OF A DIFFUSIVE FOOD WEB CONSISTING OF A PREY AND TWO PREDATORS

  • Shi, Hong-Bo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1827-1840
    • /
    • 2013
  • This paper is concerned with the positive steady states of a diffusive Holling type II predator-prey system, in which two predators and one prey are involved. Under homogeneous Neumann boundary conditions, the local and global asymptotic stability of the spatially homogeneous positive steady state are discussed. Moreover, the large diffusion of predator is considered by proving the nonexistence of non-constant positive steady states, which gives some descriptions of the effect of diffusion on the pattern formation.

GLOBAL ASYMPTOTIC STABILITY OF POSITIVE STEADY STATES OF AN n-DIMENSIONAL RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH DIFFUSION

  • Zhou, Jun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1847-1854
    • /
    • 2013
  • The main concern of this paper is to study the dynamics of an n-dimensional ratio-dependent predator-prey system with diffusion. We study the dissipativeness, persistence of the system and it is shown that the unique positive constant steady state is globally asymptotically stable under some assumptions.

THE ASYMPTOTIC STABILITY BEHAVIOR IN A LOTKA-VOLTERRA TYPE PREDATOR-PREY SYSTEM

  • Ko, Youn-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.575-587
    • /
    • 2006
  • In this paper, we provide 3 detailed and explicit procedure of obtaining some regions of attraction for the positive steady state (assumed to exist) of a well known Lotka-Volterra type predator-prey system. Also we obtain the sufficient conditions to ensure that the positive equilibrium point of a well known Lotka-Volterra type predator-prey system with a single discrete delay is globally asymptotically stable.

AN ASYMPTOTIC FORMULA FOR exp(x/1-x)

  • Song, Jun-Ho;Lee, Chang-Woo
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.363-370
    • /
    • 2002
  • We show that G(x) = $e^{(x}$(1-x))/ -1 is the exponential generating function for the labeled digraphs whose weak components are transitive tournaments and derive both a recursive formula and an explicit formula for the number of them on n vertices. Moreover, we investigate the asymptotic behavior for the coefficients of G(x) using Hayman's method.d.

ASYMPTOTIC FUNCTIONS

  • Ahn, Sung-Hun
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • In this paper, we improve some of results in [2] by showing that if I is a cnacellation ideal and if J is a regular ideal then $\alpha$(m), $\beta$(m) and $\delta$(m), behave nicely under localization. We prove that lim \ulcorner=0 if and only if $\alpha$(m) is eventually constant and that lim\ulcorner exists and is equal to or less than $\alpha$(1). Finally we give several conditions which are equivalent to $lim_{m{\rightarrow}{\infty}}{\frac{{\alpha}(m)}{m}}=0$.

  • PDF