• Title/Summary/Keyword: Asymmetric platform

Search Result 27, Processing Time 0.026 seconds

Nonlinear response of stiffened triceratops under impact and non-impact waves

  • Chandrasekaran, Srinivasan;Nassery, Jamshed
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.179-193
    • /
    • 2017
  • Dynamic response analysis of offshore triceratops with stiffened buoyant legs under impact and non-impact waves is presented. Triceratops is relatively new-generation complaint platform being explored in the recent past for its suitability in ultra-deep waters. Buoyant legs support the deck through ball joints, which partially isolate the deck by not transferring rotation from legs to the deck. Buoyant legs are interconnected using equally spaced stiffeners, inducing more integral action in dispersing the encountered wave loads. Two typical nonlinear waves under very high sea state are used to simulate impact and non-impact waves. Parameters of JONSWAP spectrum are chosen to produce waves with high vertical and horizontal asymmetries. Impact waves are simulated by steep, front asymmetric waves while non-impact waves are simulated using Stokes nonlinear irregular waves. Based on the numerical analyses presented, it is seen that the platform experiences both steady state (springing) and transient response (ringing) of high amplitudes. Response of the deck shows significant reduction in rotational degrees-of-freedom due to isolation offered by ball joints. Weak-asymmetric waves, resulting in non-impact waves cause steady state response. Beat phenomenon is noticed in almost all degrees-of-freedom but values in sway, roll and yaw are considerably low as angle of incidence is zero degrees. Impact waves cause response in higher frequencies; bursting nature of pitch response is a clear manifestation of the effect of impact waves on buoyant legs. Non-impact waves cause response similar to that of a beating phenomenon in all active degrees-of-freedom, which otherwise would not be present under normal loading. Power spectral density plots show energy content of response for a wide bandwidth of frequencies, indicating an alarming behaviour apart from being highly nonlinear. Heave, being one of the stiff degrees-of-freedom is triggered under non-impact waves, which resulted in tether tension variation under non-impact waves as well. Reduced deck response aids functional requirements of triceratops even under impact and non-impact waves. Stiffened group of buoyant legs enable a monolithic behaviour, enhancing stiffness in vertical plane.

A study on the Development Direction of Unmanned Systems for Subterranean Operations for the Special Operations Teams (특수작전팀의 지하작전용 무인체계 발전방향 연구)

  • Sang-Keun Cho;Jong-Hoon Kim;Sung-Jun Park;Bum-June Kwon;Ga-Ram Jeong;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.307-312
    • /
    • 2023
  • North Korea has already been using underground space for military purposes for decades, and is currently developing it as a key base for operating asymmetric forces. Accordingly, the special operations teams need fighting methods, weapon systems, and organizational structures to carry out subterranean operations. This paper presents an unmanned system platform for subterranean operations that combines tilt-rotor type drones, high-tech sensors, communication repeaters, and small robots, and a system that can be operated by special operation teams. Based on this, the survivability of the special operations teams can be strengthened and operational utility can be maximized. Afterwards, if Special Warfare Command collects collective intelligence based on the ideas related to subterranean operations presented in this paper and further develops these, it will be possible to drive subterranean operations doctrines, weapon systems, and organizational structures optimized for the battlefield on the Korean Theater of Operations in the near future.

Parallelizing H.264 and AES Collectively

  • Kim, Heegon;Lee, Sungju;Chung, Yongwha;Pan, Sung Bum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2326-2337
    • /
    • 2013
  • Many applications can be parallelized by using multicore platforms. We propose a load-balancing technique for parallelizing a whole application, whose first module (H.264) has data independency and whose second module (AES) has data dependency. Instead of distributing the first module symmetrically over the multi-core platform, we distribute the data-independent workload asymmetrically in order to start the data-dependent workload as early as possible. Based on the experimental results with a compression/encryption application, we confirm that the asymmetric load balancing can provide better performance than the typical symmetric load balancing.

Localized Eigenmodes in a Triangular Multicore Hollow Optical Fiber for Space-division Multiplexing in C+L Band

  • Hong, Seongjin;Oh, Kyunghwan
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.226-232
    • /
    • 2018
  • We propose a triangular-multicore hollow optical fiber (TMC-HOF) design for uncoupled mode-division and space-division multiplexing. The TMC-HOF has three triangular cores, and each core has three modes: $LP_{01}$ and two split $LP_{11}$ modes. The asymmetric structure of the triangular core can split the $LP_{11}$ modes. Using the proposed structures, nine independent modes can propagate in a fiber. We use a fully vectorial finite-element method to estimate effective index, chromatic dispersion, differential group delay (DGD), and confinement loss by controlling the parameters of the TMC-HOF structure. We confirm that the proposed TMC-HOF shows flattened chromatic dispersion, low DGD, low confinement loss, low core-to-core crosstalk, and low crosstalk between adjacent modes. The proposed TMC-HOF can provide a common platform for MDM and SDM applications.

Zero Torque Control of Switched Reluctance Motor for Integral Charging (충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어)

  • Rashidi, A.;Namazi, M.M;Saghaian, S.M.;Lee, D.H.;Ahn, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

The Study of Distributed Processing for Graphics Rendering Engine Based on ARINC 653 Multi-Core System (ARINC 653 멀티코어 기반 그래픽스 렌더링 엔진 분산처리방안 연구)

  • Jung, Mukyoung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, avionics has been migrating from a federated architecture to an integrated modular architecture based on a multi-core to reduce the number of systems, weight, power consumption, and platform redundancy. The volume of data which must bo provided to the pilot through the display device has increased, because an integrated single device performs multiple functions. For this reason, the volume of data processed by the graphic processor within a fixed operation period has increased. In this paper, we provide a multi-core-based rendering engine in to perform more graphics processing within a fixed operation period. We assume the proposed method uses a multi-core-based partitioning operating system using the AMP (Asymmetric Multi-Processing) architecture.

Comparison of encryption algorithm performance between low-spec IoT devices (저 사양 IoT 장치간의 암호화 알고리즘 성능 비교)

  • Park, Jung Kyu;Kim, Jaeho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.79-85
    • /
    • 2022
  • Internet of Things (IoT) connects devices with various platforms, computing power, and functions. Due to the diversity of networks and the ubiquity of IoT devices, demands for security and privacy are increasing. Therefore, cryptographic mechanisms must be strong enough to meet these increased requirements, while at the same time effective enough to be implemented in devices with long-range specifications. In this paper, we present the performance and memory limitations of modern cryptographic primitives and schemes for different types of devices that can be used in IoT. In addition, detailed performance evaluation of the performance of the most commonly used encryption algorithms in low-spec devices frequently used in IoT networks is performed. To provide data protection, the binary ring uses encryption asymmetric fully homomorphic encryption and symmetric encryption AES 128-bit. As a result of the experiment, it can be seen that the IoT device had sufficient performance to implement a symmetric encryption, but the performance deteriorated in the asymmetric encryption implementation.

Development of FPGA Based HIL Simulator for PMS Performance Verification of Natural Liquefied Gas Carriers (액화천연가스운반선의 PMS 성능 검증을 위한 FPGA 기반 HIL 시뮬레이터 개발)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.949-955
    • /
    • 2018
  • Hardware-in-the-loop (HIL) simulation is a technique that can be employed for developing and testing complex real-time embedded systems. HIL simulation provides an effective platform for verifying power management system (PMS) performance of liquefied natural gas carriers, which are high value-added vessels such as offshore plants. However, HIL tests conducted by research institutes, including domestic shipyards, can be protracted. To address the said issue, this study proposes a field programmable gate array (FPGA) based PMS-HIL simulator that comprises a power supply, consumer, control console, and main switchboard. The proposed HIL simulation platform incorporated actual equipment data while conducting load sharing PMS tests. The proposed system was verified through symmetric, asymmetric, and fixed load sharing tests. The proposed system can thus potentially replace the standard factory acceptance tests. Furthermore, the proposed simulator can be helpful in developing additional systems for vessel automation and autonomous operation, including the development of energy management systems.

The Relation between asymmetric weight-supporting and gait symmetry in patients with stroke (뇌졸중 환자의 체중지지 비대칭과 보행 대칭성의 관련성)

  • Lee, Yong-Woo;Shin, Doo-Chul;Lee, Kyoung-Jin;Lee, Seung-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.2
    • /
    • pp.205-212
    • /
    • 2012
  • Purpose : The aim of this study was to investigate the relationship between weight-supporting asymmetry and gait symmetry in patients with stroke. Methods : Sixty two stroke patients with hemiplegia stood quietly with eye opens on a force platform to calculate weight-supporting asymmetry from vertical reaction force. The GAITRite was used to evaluate their gait parameters. The data were analyzed using Pearson correlation. Results : The results of this study was showed that the medio-lateral index (ML) was correlated with symmetry rate (SR), symmetry index (SI), and Gait asymmetry (GA) of step time and length but stronger correlation with spatial gait symmetry than temporal symmetry. In gait symmetry, step length has stronger correlation with weight-supporting asymmetry than step time. Conclusions : The results of this study shows weight-supporting asymmetry was correlated with more spatial gait symmetry than temporal symmetry.

RPIDA: Recoverable Privacy-preserving Integrity-assured Data Aggregation Scheme for Wireless Sensor Networks

  • Yang, Lijun;Ding, Chao;Wu, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5189-5208
    • /
    • 2015
  • To address the contradiction between data aggregation and data security in wireless sensor networks, a Recoverable Privacy-preserving Integrity-assured Data Aggregation (RPIDA) scheme is proposed based on privacy homomorphism and aggregate message authentication code. The proposed scheme provides both end-to-end privacy and data integrity for data aggregation in WSNs. In our scheme, the base station can recover each sensing data collected by all sensors even if these data have been aggregated by aggregators, thus can verify the integrity of all sensing data. Besides, with these individual sensing data, base station is able to perform any further operations on them, which means RPIDA is not limited in types of aggregation functions. The security analysis indicates that our proposal is resilient against typical security attacks; besides, it can detect and locate the malicious nodes in a certain range. The performance analysis shows that the proposed scheme has remarkable advantage over other asymmetric schemes in terms of computation and communication overhead. In order to evaluate the performance and the feasibility of our proposal, the prototype implementation is presented based on the TinyOS platform. The experiment results demonstrate that RPIDA is feasible and efficient for resource-constrained sensor nodes.