• Title/Summary/Keyword: Asymmetric flux

Search Result 87, Processing Time 0.029 seconds

Ussing's flux ratio theorem for nonlinear diffusive transport with chemical interactions

  • Bracken, A.J.;McNabb, A.;Suzuki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.747-752
    • /
    • 1994
  • Ussing's flux ratio theorem (1978) reflects a reciprocal relationship behavior between the unidirectional fluxes in asymmetric steady diffusion-convection in a membrane slab. This surprising result has led to many subsequent studies in a wide range of applications, in particular involving linear models of time dependent problems in biology and physiology. Ussing's theorem and its extensions are inherently linear in character. It is of considerable interest to ask to what extent these results apply, if at all, in situations involving, for example, nonlinear reaction. A physiologically interesting situation has been considered by Weisiger et at. (1989, 1991, 1992) and by McNabb et al. (1990, 1991) who studied the role of albumin in the transport of ligands across aqueous diffusion barriers in a liver membrane slab. The results are that there exist reciprocal relationships between unidirectional fluxes in the steady state, although albumin is chemically interacting in a nonlinear way of the diffusion processes. However, the results do not hold in general at early times. Since this type of study first started, it has been speculated about when and how the Ussing's flux ratio theorem fails in a general diffusion-convection-reaction system. In this paper we discuss the validity of Ussing-type theorems in time-dependent situations, and consider the limiting time behavior of a general nonlinear diffusion system with interaction.

  • PDF

Carbonic anhydrase influences asymmetric sodium and acetate transport across omasum of sheep

  • Rabbani, Imtiaz;Rehman, Habib;Martens, Holger;Majeed, Khalid Abdul;Yousaf, Muhammad Shahbaz;Rehman, Zia Ur
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.880-885
    • /
    • 2021
  • Objective: Omasum is an important site for the absorption of short chain fatty acids. The major route for the transport of acetate is via sodium hydrogen exchanger (NHE). However, a discrepancy in the symmetry of sodium and acetate transport has been previously reported, the mechanism of which is unclear. In this study, we investigated the possible role of carbonic anhydrase (CA) for this asymmetry. Methods: Omasal tissues were isolated from healthy sheep (N = 3) and divided into four groups; pH 7.4 and 6.4 alone and in combination with Ethoxzolamide. Electrophysiological measurements were made using Ussing chamber and the electrical measurements were made using computer controlled voltage clamp apparatus. Effect(s) of CA inhibitor on acetate and sodium transport flux rate of Na22 and 14C-acetate was measured in three different flux time periods. Data were presented as mean±standard deviation and level of significance was ascertained at p≤0.05. Results: Mucosal to serosal flux of Na (JmsNa) was greater than mucosal to serosal flux of acetate (JmsAc) when the pH was decreased from 7.4 to 6.4. However, the addition of CA inhibitor almost completely abolished this discrepancy (JmsNa ≈ JmsAc). Conclusion: The results of the present study suggest that the additional protons required to drive the NHE were provided by the CA enzyme in the isolated omasal epithelium. The findings of this study also suggest that the functions of CA may be exploited for better absorption in omasum.

Effects of Flux and Ta5+ Substitution on the Photoluminescence of Lu(Nb,Ta)O4:Eu3+ Phosphors (융제 및 Ta5+ 치환이 Lu(Nb,Ta)O4:Eu3+ 형광체의 발광 특성에 미치는 영향)

  • Kim, Jiwon;Kim, Young Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.559-566
    • /
    • 2019
  • $Lu(Nb,Ta)O_4:Eu^{3+}$ powders are synthesized by a solid-state reaction process using LiCl and $Li_2SO_4$ fluxes. The photoluminescence (PL) excitation spectra of the synthesized powders consist of broad bands at approximately 270 nm and sharp peaks in the near ultraviolet region, which are assigned to the $Nb^{5+}-O^{2-}$ charge transfer of $[NbO_4]^{3-}$ niobates and the f-f transition of $Eu^{3+}$, respectively. The PL emission spectra exhibit red peaks assigned to the $^5D_0{\rightarrow}^7F_J$ transitions of $Eu^{3+}$. The strongest peak is obtained at 614 nm ($^5D_0{\rightarrow}^7F_2$), indicating that the $Eu^{3+}$ ions are incorporated into the $Lu^{3+}$ asymmetric sites. The addition of fluxes causes the increase in emission intensity, and $Li_2SO_4$ flux is more effective for enhancement in emission intensity than is LiCl flux. The substitution of $Ta^{5+}$ for $Nb^{5+}$ results in an increase or decrease in the emission intensity of $LuNb_{1-x}Ta_xO_4:Eu^{3+}$ powders, depending on amount and kind of flux. The findings are explained using particle morphology, modification of the $[NbO_4]^{3-}$ structure, formation of substructure of $LuTaO_4$, and change in the crystal field surrounding the $Eu^{3+}$ ions.

Experimental and Analytical Studies on the Characteristics of Fast Switch in Combinations of Various Superconducting Tapes (다양한 선재 조합에 따른 이종 초전도 스위치의 특성 실험 및 분석)

  • Lee, Ji-Ho;Kim, Young-Jae;Na, Jin-Bae;Choi, Suk-Jin;Jang, Jae-Young;Hwang, Young-Jin;Kim, Jin-Sub;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • A Hybrid Fault Current Limiter(FCL) which has more advantages in fast response and thermal characteristics than a simple resistive FCL had been proposed by our group. The Hybrid FCL consists of a resistive FCL for the magnitude of the first peak of fault current, and a fast switch for detecting fault current and generating the repulsive force within a cycle in fault situation. In ideal case, the impedance of the fast switch wound with two other kinds of HTS tape is negligibly zero in normal operation. But, during the fault situation, each HTS tape has different quench characteristics because of asymmetric current distribution. And this phenomenon causes effective flux and this flux opens the switch through the repulsive force applied to a metal plate of the fast switch. The magnitude of the repulsive force affects the switching characteristics of the fast switch. It should be large enough to raise the metal plate up. Otherwise the arc re-out break which are caused by not enough repulsive force to raise the metal plate up can cause unintended operation of the fast switch. In this paper, the numerical calculation of the repulsive force applied to the metal plate of the fast switch in various combinations of HTS tapes was performed by using the short-circuit test and finite element method.

Design and Characteristic Analysis of Moving Coil type Linear Oscillatory Actuator Considering Unbalanced Magnetic Circuit (불평형 자기회로를 고려한 가동 코일형 리니어 진동 엑추에이터의 설계 및 특성해석)

  • Kim, Duk-Hyun;Eum, Sang-Joon;Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.403-410
    • /
    • 2000
  • This paper deals with a study to improve the performance of Moving Coil type Linear Oscillatory Actuator (MC-LOA) considering unbalanced magnetic circuit. MC-LOA has an unbalanced magnetic circuit due to its asymmetric structure. In this type of LOA, the airgap flux density tends to have different magnitude along mover's displacement and the current directions. The above property causes eccentric of displacement center and interferes with the proper oscillation of LOA. Therefore, this paper presents two models having the unbalanced magnetic circuit and the other balanced by the saturated core. In order to compare the characteristics between the two models, a characteristic analysis for both the basic model and the improved model is performed by their dynamic analysis composed of kinetic and electric equations and Finite Element Method (FEM). The propriety of the improved model is verified through the experimental results.

  • PDF

Cement/PVDF hollow-fiber hybrid basement membrane: Preparation, microstructure, and separation application

  • Yabin, Zhang;Xiongfei, Du;Taotao, Zhao
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.291-301
    • /
    • 2022
  • In this study, cement/PVDF hollow-fiber hybrid membranes were prepared via a mixed process of diffusion-induced phase separation and hydration. The presence of X-ray diffraction peaks of Ca(OH)2, an AFt phase, an AFm phase, and C-S-H phase confirmed the hydration reaction. Good hydrophilicity was obtained. The cross-sectional and surface morphologies of the hybrid membranes showed that an asymmetric pore structure was formed. Hydration products comprising parallel plates of Ca(OH)2, fibrous ettringite AFt, and granulated particles AFm were obtained gradually. For the hybrid membranes cured for different time, the pore-size distribution was similar but the porosity decreased because of blocking of the hydration products. In addition, the water flux decreased with hydration time, and carbon retention was 90% after 5 h of rejection treatment. Almost all the Zn2+ ions were adsorbed by the hybrid membrane. The above results proved that the obtained membrane could be alternative as basement membrane for separation application.

A MONTE CARLO STUDY OF FLUX RATIOS OF RAMAN SCATTERED O VI FEATURES AT 6825 Å AND 7082 Å IN SYMBIOTIC STARS

  • Lee, Young-Min;Chang, Seok-Jun;Heo, Jeong-Eun;Hong, Chae-Lin;Lee, Hee-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.57.3-58
    • /
    • 2016
  • A symbiotic star is a wide binary system consisting of a hot white dwarf and a mass losing giant, where the giant loses its material in the form of a slow stellar wind resulting in accretion onto the white dwarf through gravitational capture. Symbiotic stars are known to exhibit unique spectral features at 6825 and 7082, which are formed from O VI 1032 and 1038 through Raman scattering with atomic hydrogen. In this Monte Carlo study we investigate the flux ratio of 6825 and 7082 in a neutral region with a geometric shape of a slab, cylinder and sphere. By varying the amount of neutral hydrogen parametrized by the column density along a specified direction, we compute and compare the flux ratio of Raman scattered O VI 6825 and 7082. In the column density around 1020 cm-2, flux ratio changes in a complicated way, rapidly decreasing from the optically thin limit to unity the optically thick limit as the column density increases. It is also notable that when the neutral region is of a slab shape with the O VI source outside the slab, the optically thick limit is less than unity, implying a significant fraction of O VI photons escape through Rayleigh scattering near the boundary. We compare our high resolution CFHT data of HM Sge and AG Dra with the data simulated with finite cylinder models confirming that 'S' type symbiotic tend to be characterized by thicker HI region that 'D' type counterparts. It is expected that this study will be useful in interpretation of the clear disparity of Raman O VI 6825 and 7082 profiles, which will shed much light on the kinematics and the asymmetric distribution of O VI material around the hot white dwarf.

  • PDF

ACCRETION FLOW AND DISPARATE PROFILES OF RAMAN SCATTERED O VI λλ 1032, 1038 IN THE SYMBIOTIC STAR V1016 CYGNI

  • Heo, Jeong-Eun;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • The symbiotic star V1016 Cygni, a detached binary system consisting of a hot white dwarf and a mass-losing Mira variable, shows very broad emission features at around 6825 Å and 7082 Å, which are Raman scattered O vi λλ 1032, 1038 by atomic hydrogen. In the high resolution spectrum of V1016 Cyg obtained with the Bohyunsan Optical Echelle Spectrograph these broad features exhibit double peak profiles with the red peak stronger than the blue counterpart. However, their profiles differ in such a way that the blue peak of the 7082 feature is relatively weaker than the 6825 counterpart when the two Raman features are normalized to exhibit an equal red peak strength in the Doppler factor space. Assuming that an accretion flow around the white dwarf is responsible for the double peak profiles, we attribute this disparity in the profiles to the local variation of the flux ratio of O vi λλ 1032, 1038 in the accretion flow. A Monte Carlo technique is adopted to provide emissivity maps showing the local emissivity of O vi λ1032 and O vi λ1038 in the vicinity of the white dwarf. We also present a map indicating the differing flux ratios of O vi λλ 1032 and 1038. Our result shows that the flux ratio reaches its maximum of 2 in the emission region responsible for the central trough of the Raman feature and that the flux ratio in the inner red emission region is almost 1. The blue emission region and the outer red emission region exhibit an intermediate ratio around 1.5. We conclude that the disparity in the profiles of the two Raman O vi features strongly implies accretion flow around the white dwarf, which is azimuthally asymmetric.

Preparation and Characterization of Microfiltration Membranes for Water Treatment (수처리용 정밀여과 멤브레인의 제조 및 특성 연구)

  • Jung, Boram;Kim, Nowon
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.50-62
    • /
    • 2014
  • An asymmetric microfiltration membranes were prepared with polysulfone by an immersion precipitation phase inversion method. Microfiltration membranes were prepared by polysulfone/N-methyl-2-pyrrolidone/polyvinylpyrrolidone/phosphoric acid casting solution and water coagulant. The vapor induced phase inversion method was used to prepare the membranes. The pore size and the morphology were changed by the phosphoric acid additive, the temperature of casting plate and the exposure time at the relative humidity of 74%. The morphology of membranes was investigated by scanning electron microscopy and microflow permporometer. By the addition of the phosphoric acid additive in the casting solution, the morphology of the prepared membranes were changed from a dense sponge structure to a loose asymmetric sponge structure. Due to the addition of catalytic amount of phosphoric acid to NMP casting solution, the mean pore size increased almost $0.2{\mu}m$ and the water flux increased about 3,000 LMH. The temperature of casting plate and exposure time had a apparent effect on the skin layer structure and the pore size and the porosity of the membrane.

Characteristics of Flux Decline in Forward Osmosis Process for Asymmetric Cellulose Membrane (정삼투 공정에 있어 비대칭 셀룰로오즈 막의 투과유속 감소특성)

  • Lee, Keun-Woo;Han, Myeong-Jin;Nam, Suk-Tae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.328-334
    • /
    • 2014
  • This study examined the effect of concentration polarization on permeate flux in forward osmosis (FO) membrane process for saline and sucrose solution. The reduction in permeate flux during the FO membrane process is largely due to the formation of concentration polarization on membrane surfaces. The flux reduction due to internal concentration polarization formed on the porous support layer was larger than that due to the external concentration polarization on the active membrane surface. Water permeate flux through the FO membrane increased nonlinearly with the increase in osmotic pressure. The water permeability coefficient was $1.8081{\times}10^{-7}m/s{\cdot}atm$ for draw solution on active layer (DS-AL) mode and $1.0957{\times}10^{-7}m/s{\cdot}atm$ for draw solution on support layer (DS-SL) mode in NaCl solution system. The corresponding membrane resistance was $5.5306{\times}10^6$ and $9.1266{\times}10^6s{\cdot}atm/m$, respectively. With respect to the sucrose solution, the permeate flux for DS-AL mode was 1.33~1.90 times higher than that for DS-SL mode. The corresponding variation in the permeation flux (J) due to osmotic pressure (${\pi}$) would be expressed as $J=-0.0177+0.4506{\pi}-0.0032{\pi}^2$ for the forward and $J=0.0948+0.3292{\pi}-0.0037{\pi}^2$ for the latter.