• Title/Summary/Keyword: Astronomy Act

Search Result 19, Processing Time 0.029 seconds

OPERATION OF A LUNISOLAR CALENDAR IN KOREA AND ITS CALCULATION METHOD (한국 음력의 운용과 계산법 연구)

  • PARK, HAN-EARL;MIHN, BYEONG-HEE;AHN, YOUNG-SOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.3
    • /
    • pp.407-420
    • /
    • 2017
  • We study the operation of a lunisolar calendar in Korea and its time data calculation method. The dates based on the lunisolar calendar have been conventionally used in Korea after the Gregorian calendar was introduced in 1896. With the Astronomy Act enacted in 2010, the lunisolar calendar is presently being used as an official calendar along with the Gregorian calendar. However, no institutionalized regulations have been provided on the time data calculation method by the lunisolar calendar. The Korea Astronomy and Space Science Institute very recently established the regulations on the lunisolar calendar operation in Korea. We introduce the regulations together with historical substances and analyze the time data calculated according to the regulations for 600 years from 1901 to 2500. From our study, we find that the value of ${\Delta}T$ (i.e., the difference between the terrestrial time and the universal time) is the most critical parameter causing uncertainty on the data. We also find that all new Moon days in the almanacs agree with our calculations since 1912. Meanwhile, we find that new Moon and winter solstice times are found to be very close to midnight in 38 and five cases, respectively. For instance, the new Moon time on January 14, 2097 is 0 h 0 min 8 s. In this case, deciding the first day (i.e., new moon day) in a lunar month is difficult because of the large uncertainty in the value of ${\Delta}T$. Regarding with a lunar leap month, we find that the rules of inserting the leap month do not apply for 17 years. In conclusion, we believe that our findings are helpful in determining calendar days by using the lunisolar calendar.

Analysis of Cosmic Radiation Exposure for Domestic Flight Crews in Korea

  • Ahn, Hee-Bok;Hwang, Junga;Kwak, Jaeyoung;Kim, Kyuwang
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.51-57
    • /
    • 2022
  • Cosmic radiation exposure of the flight crews in Korea has been managed by Radiation Safety Management around Living Life Act under Nuclear Safety and Security Commission. However, the domestic flight crews are excluded from the Act because of relatively low route dose exposure compared to that of international flight crews. But we found that the accumulated total annual dose of domestic flight crews is far from negligible because of relatively long total flight time and too many flights. In this study, to suggest the necessity of management of domestic flight crews' radiation exposure, we statistically analyzed domestic flight crew's accumulative annual dose by using cosmic radiation estimation models of the Civil Aviation Research Institute (CARI)-6M, Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS), and Korean Radiation Exposure Assessment Model (KREAM) and compared with in-situ measurements of Liulin-6K LET spectrometer. As a result, the average exposure dose of domestic flight crews was found to be 0.5-0.8 mSv. We also expect that our result might provide the basis to include the domestic flight crews as radiation workers, not just international flight attendants.

An Improved Weak-Lensing Analysis of the Galaxy Cluster ACT-CL J0102-4915 with New Wide-Field HST Imaging Data

  • Kim, Jinhyub;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.29.5-30
    • /
    • 2020
  • We present an improved weak-lensing (WL) study of the high-z (z=0.87) merging galaxy cluster ACT-CL J0102-4915 ("El Gordo"), the most massive system known to date at z > 0.6. El Gordo has been known to be an exceptionally massive and rare cluster for its redshift in the current ΛCDM cosmology. Previous multi-wavelength studies have also found that the cluster might be undergoing a merging event showing two distinctive mass clumps and radio relics. The previous WL study revealed a clear bimodal mass structure and found that the entire system is indeed massive (M200a = (3.13 ± 0.56) × 1015 Msun). This mass estimate, however, was obtained by extrapolation because the previous HST observation did not extend out to the virial radius of the cluster. In this work, we determine a more accurate mass estimate of the cluster using WL analysis utilizing a new set of WFC3/IR and wide-field ACS observations. While confirming the previous bimodal mass structure, we find that the new data yield a ~20% lower mass for the entire system (M200a = (2.37 ± 0.28) × 1015 Msun). We also discuss the rarity of the cluster in the ΛCDM paradigm and suggest an updated merging scenario based on our new measurement.

  • PDF

Effects of geomagnetic storms on the middle atmosphere and troposphere by ground-based GPS observations

  • Jin, Shuang-Gen;Park, Jong-Uk;Park, Pil-Ho;Cho, Jung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.47-51
    • /
    • 2006
  • Among Solar activities' events, the geomagnetic storms are believed to cause the largest atmospheric effects. The geomagnetic storm is a complex process of solar wind/magnetospheric origin. It is well known to affect severely on the ionosphere. However, this effect of this complex process will maybe act at various altitudes in the atmosphere, even including the lower layer and the neutral middle atmosphere, particularly the stratosphere. Nowadays, the GPS-derived ZTD (zenith tropospheric delay) can be transformed into the precipitable water vapor (PWV) through a function relation, and further has been widely used in meteorology, especially in improving the precision of Numerical Weather Prediction (NWP) models. However, such geomagnetic effects on the atmosphere are ignored in GPS meteorology applications. In this paper, we will investigate the geomagnetic storms' effects on the middle atmosphere and troposphere (0-100km) by GPS observations and other data. It has found that geomagnetic storms' effect on the atmosphere also appears in the troposphere, but the mechanism to interpret correlations in the troposphere need be further studied.

  • PDF

FINDING THE ACCELERATION PARAMETER IN MODIFIED NEWTONIAN DYNAMICS WITH ELLIPTICAL GALAXIES

  • TIAN, YONG;KO, CHUNG-MING
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.381-383
    • /
    • 2015
  • MOdified Newtonian Dynamics (MOND) is an alternative to the dark matter paradigm. MOND asserts that when the magnitude of acceleration is smaller than the acceleration parameter $a_0$, the response of the system to gravity is stronger (larger acceleration) than the one given by Newtonian dynamics. The current value of $a_0$ is obtained mostly by observations of spiral galaxies (rotation curves and the Tully-Fisher relation). We attempt to estimate $a_0$ from the dynamics of elliptical galaxies. We seek elliptical galaxies that act as the lens of gravitational lensing systems and have velocity dispersion data available. We analysed 65 Einstein rings from the Sloan Len ACS survey (SLACS). The mass estimates from gravitation lensing and velocity dispersion agree well with each other, and are consistent with the estimates from population synthesis with a Salpeter IMF. The value of $a_0$ obtained from this analysis agrees with the current value.

Evolutionary status of seven detached binary stars

  • Kanjanasakul, Chanisa;Kang, Young-Woon
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.32.4-32.4
    • /
    • 2010
  • Evolution of the Cosmos (ARCSEC). We have presented the evolutionary status of seven detached double line spectroscopic eclipsing binaries which are CD Tau, CM Lac, CW CMa, HS Hya, IT Cas, KM Hya, and ZZ Boo because the component stars in the binary systems still act as a single star. We determined the absolute dimensions of the binary systems using photometric and spectroscopic solutions by analyzing of the light curves and radial velocity curves. We chose evolutionary tracks of these binary systems. Using the luminosities, effective temperatures and masses. Finally we obtained ages and metallicity of the stars.

  • PDF

First-principles studies of the structural and electronic properties of rigid carbon nanofoam

  • Park, So-Ra;Kittimanapun, Kritsada;Ahn, Jeung-Sun;Tomanek, David;Kwon, Young-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.76-76
    • /
    • 2010
  • Using ab initio density functional calculations, we investigate the structural and electronic properties of porous schwarzite structures formed by $sp^2$ carbon minimal surfaces with negative Gaussian curvature. We calculate the equilibrium geometries, elastic properties and electronic structure of two systems with cubic unit cells containing 152 and 200 carbon atoms, which are metallic and very rigid. The porous schwarzite structure can be efficiently doped by electron donors as well as accepors, making it a promising candidate for the next generation of alkali ion batteries. Furthermore, the schwarzite structures can be magnetic when doped and thus act as arrays of interconnected quantum spin dots. We also propose that two interpenetrating schwarzite structures be used as a ultimate super-capacitor.

  • PDF

Constraining the ICL formation mechanism using fossil clusters at z~0.47

  • Yoo, Jaewon;Ko, Jongwan;Kim, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.33.3-34
    • /
    • 2018
  • Galaxy clusters contain a diffuse component of stars outside galaxies, that is observed as intracluster light (ICL). Since the ICL abundance increases during various dynamical exchanges of galaxies, the amount of ICL can act as a measurement tool for the dynamical stage of galaxy clusters. There are two prominent ICL formation scenarios; one is related to the brightest cluster galaxy (BCG) major mergers, and the other to the tidal stripping of galaxies. However, it is still under debate as to which is the main ICL formation mechanism. In this study we improve on earlier observational constraints of the ICL origin, by investigating it in a massive fossil cluster at z~0.47. Fossil clusters are believed to be dynamically matured galaxy clusters which have dominant BCGs. Recent simulation studies imply that, BCGs have assembled 85~90% of their mass by z~0.4 (e.g., Contini et al. 2014). Thus our target is an optimal test bed to examine the BCG-related scenario. Our deep images and Multi-Object Spectroscopic observations of the target fossil cluster (Gemini North 2018A) allow us to extract the ICL distribution, ICL color map and ICL fraction to cluster light. We will present a possible constraint of the ICL origin and discuss its connection to the BCG and the host galaxy cluster.

  • PDF

The Analysis of Science Curricula Reflected Programs in Astronomy Science Museums (천문과학관 프로그램에 반영된 과학교육과정의 분석)

  • Yun, Gwang-a;Choi, Sang-In;Jeong, Ku-Song;Lee, Ho
    • Journal of Science Education
    • /
    • v.33 no.1
    • /
    • pp.142-151
    • /
    • 2009
  • The purpose of this study is to investigate how much the programs of astronomy museums reflect the contents and objectives of current science curriculums. To attain the aim, comparison and analysis on the museum programs and science curriclum have been made. Five domestic astronomy museums have been selected. The contents and forms of their programs have been studied and appreciated by assessment instruments for astronomy museum programs. The assessment instruments were devised in consideration of both the science curriculums of the Ministry of Education(1997) and the achievement and evaluation criteria of the Korea Institute of Curriculum and Evaluation. The findings of this study are summarized as follows: The astronomy museums reflect most of the learning elements of science curricula concerning astronomy. These results indicate that the astronomy museum as an informal education institute is comparatively well connected to science education. The 5thgrade science curriculum reflected mostly on the museum programs, and too many of the astronomy museum programs were in forms of panel exhibition. Science curricula fared well but they failed to reflect the curricular objectives, which resulted in relatively low assessment scores. It is suggested that the findings of this study can be a foundation and act as guidance for selecting and developing astronomy museum programs which include the contents of the science curriculums more substantially.

  • PDF

Effects of multiple driving scales on incompressible turbulence

  • Yoo, Hyun-Ju;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.75.2-75.2
    • /
    • 2012
  • Turbulence is ubiquitous in astrophysical fluids such as the interstellar medium and intracluster medium. To maintain turbulent motion, energy must be injected into the fluids. In turbulence studies, it is customary to assume that the fluid is driven on a scale, but there can be many different driving mechanisms that act on different scales in astrophysical fluids. We expect different statistical properties of turbulence between turbulence with single driving scale and turbulence with double driving scales. In this work, we perform 3-dimensional incompressible MHD turbulence simulations with energy injection in two ranges, 2${\surd}$12 (large scale) and 15

  • PDF