• Title/Summary/Keyword: Aster magnus

Search Result 1, Processing Time 0.017 seconds

Heavy Metals Uptake Capability and Growth of Fifteen Compositae Plants for Phytoremediation (식물환경복원 소재선발을 위한 국화과 15종의 생육 및 중금속 축적능 분석)

  • Kwon, Hyuk Joon;Lee, Cheol Hee;Kim, Soo-Young
    • Korean Journal of Plant Resources
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • This study was performed to select the effective plant for phytoremediation of heavy metal contaminated areas. After cultivation of fifteen Compositae plants on soil contaminated with heavy metals for 8 weeks, the growth response and accumulation ability of each parts for heavy metal, such as arsenic, cadmium, copper, lead, and zinc were analyzed. Except Adiantum capillus-veneris, growth of Aster incisus, Coreopsis drumondii), Dendranthema indicum, Saussurea pulchella were relatively fine. Arsenic accumulation ability was the highest by Artemisia gmelini ($25.52mg{\cdot}kg^{-1}$ DW) in underground part, and D. sichotense ($3.35mg{\cdot}kg^{-1}$) in aerial part. Cadmium was the highest by Aster magnus ($2.50mg{\cdot}kg^{-1}$) in aerial part. Aerial and underground part of S. pulchella showed the highest copper accumulation (24.29, $99.92mg{\cdot}kg^{-1}$). In lead, 1.43 (A. magnus)${\sim}5.00mg{\cdot}kg^{-1}$ (S. deltoides) were accumulated in aerial part among fifteen Compositae plants. Aster hayatae ($140.09mg{\cdot}kg^{-1}$), Aster yomena ($109.07mg{\cdot}kg^{-1}$), A. magnus ($100.21mg{\cdot}kg^{-1}$) are absorbed more than $100mg{\cdot}kg^{-1}$ of Zinc. Therefore, they are considered to be phytoremediation material of zinc contaminated areas.