• Title/Summary/Keyword: Assumed modes

Search Result 228, Processing Time 0.027 seconds

Numerical procedure for the vibration analysis of arbitrarily constrained stiffened panels with openings

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.763-774
    • /
    • 2014
  • A simple and efficient vibration analysis procedure for stiffened panels with openings and arbitrary boundary conditions based on the assumed mode method is presented. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion, where Mindlin theory is applied for plate and Timoshenko beam theory for stiffeners. The effect of stiffeners on vibration response is taken into account by adding their strain and kinetic energies to the corresponding plate energies whereas the strain and kinetic energies of openings are subtracted from the plate energies. Different stiffened panels with various opening shapes and dispositions for several combinations of boundary conditions are analyzed and the results show good agreement with those obtained by the finite element analysis. Hence, the proposed procedure is especially appropriate for use in the preliminary design stage of stiffened panels with openings.

A Study on the Coupled Shaft-Torsional and Blade-Bending Vibrations in the Flexible Rotor-Coupling-Blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Lee, Sun-Sook;Oh, Byung-Young;Yoon, Hyung-Won;Cha, Seog-Ju;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.221-226
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system is developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility is lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations is employed for developing the equation of the motion. The assumed modes method is used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearif, stiffness hardening and softening.

  • PDF

A Study on the efficient control of an elastic manipulator moving in a vertical plane (수직면에서 작동하는 탄성 매니퓰레이터의 효율적인 제어에 관한 연구)

  • 강준원;이중섭;권혁조;오재윤;정재욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.318-322
    • /
    • 1996
  • This paper presents a technique to control a robot which has a flexible manipulator moving in a vertical plane. The flexible manipulator is modeled as an Euler-Bernoulli beam. Elastic deformation is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. A control algorithm is developed using a simple PID control technique. The proportional, integral and derivative control gains are determined based on the dominant pole placement method and tuned to show no overshoot and having a short settling time. The effectiveness of the developed control scheme is showed experimentally. In the position control experiment, three different end masses are used. The experimental results shows little overshoot, no steady state error, and less than 2.5 second settling time in case of having an end mass which is equivalent to 45% of the total system weight. Also the residual vibration of the end point is effectively controlled.

  • PDF

A Study on the Coupled Shaft-torsional and Blade-bending Vibrations in the Flexible Rotor-coupling-blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Oh, Byung-Young;Lee, Sun-Sook;Yoon, Hyungwon;Cha, Seog-Ju;Na, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1023-1029
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system was developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility was lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations was employed for developing the equation of the motion. The Assumed Modes Method was used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, stiffness hardening and softening.

Approximate natural vibration analysis of rectangular plates with openings using assumed mode method

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.478-491
    • /
    • 2013
  • Natural vibration analysis of plates with openings of different shape represents an important issue in naval architecture and ocean engineering applications. In this paper, a procedure for vibration analysis of plates with openings and arbitrary edge constraints is presented. It is based on the assumed mode method, where natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. The presented solution represents an extension of a procedure for natural vibration analysis of rectangular plates without openings, which has been recently presented in the literature. The effect of an opening is taken into account in an intuitive way, i.e. by subtracting its energy from the total plate energy without opening. Illustrative numerical examples include dynamic analysis of rectangular plates with rectangular, elliptic, circular as well as oval openings with various plate thicknesses and different combinations of boundary conditions. The results are compared with those obtained by the finite element method (FEM) as well as those available in the relevant literature, and very good agreement is achieved.

Design of the controller with sliding mode for flexible robot arm (유연한 로봇 팔의 슬라이딩모드를 갖는 제어기 설계)

  • 김성태;임규만;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.547-551
    • /
    • 1996
  • In this paper, robust vibration control of a one-link flexible robot arm based on variable structure system is discussed. We derive dynamic equations of it using a Lagrangian assumed modes method based on Bernoulli-Euler Beam theory. The optimal sliding surface is designed and the problem of chattering is also solved by the adoption of a continuous control law within a small neighborhood of the switching hyperplane.

  • PDF

Earthquake Resistance of Masonry Infilled Wall (조적 채움벽의 내진성)

  • 이한선;우성우;유은진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.93-98
    • /
    • 2000
  • The objective of this study is to investigate the results of researches which have been conducted throughout the world and in Korea concerning the behavior modes of masonry infill panels and frames. The influence of masonry infill panels on the seismic behavior of RC frames must be considered in the design and evaluation procedure though current code provisions do not generally require explicitly this consideration. However, since the level of the earthquake intensity in Korea is assumed to be moderate, the masonry infill panels may cause the different effect to the structure from those in high seismicity region and this difference should be studied in depth in the future.

  • PDF

Design of the Controller with Sliding Mode for Robot Arm (슬라이딩모드를 갖는 로봇 팔의 제어기 설계)

  • 서원창;임규만;정영창
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.703-706
    • /
    • 1999
  • In this paper, robust vibration control of a one-link flexible robot arm based on variable structure system is discussed. We derive dynamic equations of it using a Lagragian assumed modes method based on Bernoulli-Euler beam theory. The optimal sliding surface is designed and the problem of chattering is also solved by the adoptation of a continuous control law within a small neighborhood of the switching hyperplane.

  • PDF

Variability of Mid-plane Symmetric Functionally Graded Material Beams in Free Vibration (중립면 대칭 기능경사재료 보의 자유진동 변화도)

  • Nguyen, Van Thuan;Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.127-132
    • /
    • 2018
  • In this paper, a scheme for the evaluation of variability in the eigen-modes of functionally graded material(FGM) beams is proposed within the framework of perturbation-based stochastic analysis. As a random parameter, the spatially varying elastic modulus of FGM along the axial direction at the mid-surface of the beam is chosen, and the thru-thickness variation of the elastic modulus is assumed to follow the original form of exponential variation. In deriving the formulation, the first order Taylor expansion on the eigen-modes is employed. As an example, a simply supported FGM beam having symmetric elastic modulus with respect to the mid-surface is chosen. Monte Carlo analysis is also performed to check if the proposed scheme gives reasonable outcomes. From the analyses it is found that the two schemes give almost identical results of the mean and standard deviation of eigen-modes. With the propose scheme, the standard deviation shape of respective eigen-modes can be evaluated easily. The deviated mode shape is found to have one more zero-slope points than the mother modes shapes, irrespective of order of modes. The amount of deviation from the mean is found to have larger values for the higher modes than the lower modes.

3-Axis Modeling and Small Angle Maneuver Including Vibration Suppression for a Satellite (인공위성의 3축 모델링과 진동억제를 포함한 소각선회)

  • Lee, D.W.;Cho, K.R.
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.103-113
    • /
    • 2000
  • There are several methods in the mathematical modeling of a satellite with flexible appendages. In this paper, the hybrid Lagrange's equations of motion using assumed modes method are derived. The assumed modes method is one of approximate methods which have shorter calculation time due to low-dimension compare with FEM. These consist of three-equations about angular velocities and two-equations about flexible deformations, and physically represent interaction between hub and solar panel. In an attitude control, a control law is designed to minimize a given performance index considering not only control input but also vibration suppression. For these purpose, this paper applies LQG and LQG/LTR schemes to this model and finally show the capability for attitude control including vibration suppression. Especially, this paper shows the method of assumption as nonsingular system through singular value division for LQG/LTR design.

  • PDF