• 제목/요약/키워드: Association Prediction

검색결과 2,221건 처리시간 0.033초

머신러닝 기법 기반의 예측조합 방법을 활용한 산업 부가가치율 예측 연구 (Prediction on the Ratio of Added Value in Industry Using Forecasting Combination based on Machine Learning Method)

  • 김정우
    • 한국콘텐츠학회논문지
    • /
    • 제20권12호
    • /
    • pp.49-57
    • /
    • 2020
  • 본 연구는 우리나라 수출 분야 산업의 경쟁력을 나타내는 부가가치율을 다양한 머신러닝 기법을 활용하여 예측하였다. 아울러, 예측의 정확성 및 안정성을 높이기 위하여 머신러닝 기법 예측값들에 예측조합 기법을 적용하였다. 특히, 본 연구는 산업별 부가가치율에 영향을 주는 다양한 변수를 고려하기 위하여 재귀적특성제거 방법을 사용하여 주요 변수를 선별한 후 머신러닝 기법에 적용함으로써 예측과정의 효율성을 높였다. 분석결과, 예측조합 방법에 따른 예측값은 머신러닝 기법 예측값들보다 실제의 산업 부가가치율에 근접한 것으로 나타났다. 또한, 머신러닝 기법의 예측값들이 큰 변동성을 보이는 것과 달리 예측조합 기법은 안정적인 예측값을 나타내었다.

Optimize rainfall prediction utilize multivariate time series, seasonal adjustment and Stacked Long short term memory

  • Nguyen, Thi Huong;Kwon, Yoon Jeong;Yoo, Je-Ho;Kwon, Hyun-Han
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.373-373
    • /
    • 2021
  • Rainfall forecasting is an important issue that is applied in many areas, such as agriculture, flood warning, and water resources management. In this context, this study proposed a statistical and machine learning-based forecasting model for monthly rainfall. The Bayesian Gaussian process was chosen to optimize the hyperparameters of the Stacked Long Short-term memory (SLSTM) model. The proposed SLSTM model was applied for predicting monthly precipitation of Seoul station, South Korea. Data were retrieved from the Korea Meteorological Administration (KMA) in the period between 1960 and 2019. Four schemes were examined in this study: (i) prediction with only rainfall; (ii) with deseasonalized rainfall; (iii) with rainfall and minimum temperature; (iv) with deseasonalized rainfall and minimum temperature. The error of predicted rainfall based on the root mean squared error (RMSE), 16-17 mm, is relatively small compared with the average monthly rainfall at Seoul station is 117mm. The results showed scheme (iv) gives the best prediction result. Therefore, this approach is more straightforward than the hydrological and hydraulic models, which request much more input data. The result indicated that a deep learning network could be applied successfully in the hydrology field. Overall, the proposed method is promising, given a good solution for rainfall prediction.

  • PDF

Investigating the performance of different decomposition methods in rainfall prediction from LightGBM algorithm

  • Narimani, Roya;Jun, Changhyun;Nezhad, Somayeh Moghimi;Parisouj, Peiman
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.150-150
    • /
    • 2022
  • This study investigates the roles of decomposition methods on high accuracy in daily rainfall prediction from light gradient boosting machine (LightGBM) algorithm. Here, empirical mode decomposition (EMD) and singular spectrum analysis (SSA) methods were considered to decompose and reconstruct input time series into trend terms, fluctuating terms, and noise components. The decomposed time series from EMD and SSA methods were used as input data for LightGBM algorithm in two hybrid models, including empirical mode-based light gradient boosting machine (EMDGBM) and singular spectrum analysis-based light gradient boosting machine (SSAGBM), respectively. A total of four parameters (i.e., temperature, humidity, wind speed, and rainfall) at a daily scale from 2003 to 2017 is used as input data for daily rainfall prediction. As results from statistical performance indicators, it indicates that the SSAGBM model shows a better performance than the EMDGBM model and the original LightGBM algorithm with no decomposition methods. It represents that the accuracy of LightGBM algorithm in rainfall prediction was improved with the SSA method when using multivariate dataset.

  • PDF

경년열화를 고려한 전단벽 구조물의 기계학습 기반 지진응답 예측모델 개발 (Development of Machine Learning Based Seismic Response Prediction Model for Shear Wall Structure considering Aging Deteriorations)

  • 김현수;김유경;이소연;장준수
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.83-90
    • /
    • 2024
  • Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.

건축자재 라돈 방출에 의한 실내공기 중 라돈농도 예측에 관한 연구 (A study on the Prediction of Indoor Concentration due to Radon Exhalation from Domestic Building Materials)

  • 이철민;곽윤경;이동현;이다정;조용석
    • 한국환경과학회지
    • /
    • 제24권9호
    • /
    • pp.1131-1138
    • /
    • 2015
  • Radon exhalation rates have been determined for samples of concrete, gypsum board, marble, and tile among building materials that are used in domestic construction environment. Radon emanation was measured using the closed chamber method based on CR-39 nuclear track detectors. The radon concentrations in apartments of 100 households in Seoul, Busan and Gyeonggi Provinces were measured to verify the prediction model of indoor radon concentration. The results obtained by the four samples showed the largest radon exhalation rate of $0.34314Bq/m^2{\cdot}h$ for sample concrete. The radon concentration contribution to indoor radon in the house due to exhalation from the concrete was $31.006{\pm}7.529Bq/m^3$. The difference between the prediction concentration and actual measured concentration was believed to be due to the uncertainty resulting from the model implementation.

Effect of Somatic Cell Score on Protein Yield in Holsteins

  • Khan, M.S.;Shook, G.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제11권5호
    • /
    • pp.580-585
    • /
    • 1998
  • The study was conducted to determine if variation in protein yield can be explained by expressions of early lactation somatic cell score (SCS) and if prediction can be improved by including SCS among the predictors. A data set was prepared (n = 663,438) from Wisconsin Dairy Improvement Association (USA) records for protein yield with sample days near 20. Stepwise regression was used requiring F statistic (p < .01) for any variable to stay in the model. Separate analyses were run for 12 combinations of four seasons and first three parities. Selection of SCS variables was not consistent across seasons or lactations. Coefficients of detennination ($R^2$) ranged from 51 to 61% with higher values for earlier lactations. Including any expression of SCS in the prediction equations improved $R^2$ by < 1 %. SCS was associated with milk yield on the sample day, but the association was not strong enough to improve the prediction of future yield when other expressions of milk yield were in the model.

로지스틱 회귀분석 기법을 이용한 강원도 산사태 취약성 평가 및 분석 (Evaluation and Analysis of Gwangwon-do Landslide Susceptibility Using Logistic Regression)

  • 연영광
    • 한국지리정보학회지
    • /
    • 제14권4호
    • /
    • pp.116-127
    • /
    • 2011
  • 본 논문에서는 로지스틱 회귀분석 기법을 이용하여 산사태 취약성 분석을 수행하였다. 예측모델의 성능은 모델의 적합도 검증을 통해 사용된 데이터가 모델에 얼마나 잘 반영되어 구축되었는지에 대한 적합도 평가뿐만 아니라 예측성능에 대한 평가가 필요하다. 따라서 이 논문에서는 모델에 대한 객관적인 결과를 얻기 위해 이와 같은 두 가지 측면에 대하여 예측성능 평가를 적용하였다. 연구지역은 2006년도 집중 호우로 많은 산사태가 발생한 강원도 인제 일대를 대상으로 하였다. 산사태 관련인자들은 지형도, 토양도, 임상도로부터 추출하였다. 예측모델에 대한 평가는 누적이득차트 곡선의 하부영역을 계산하였다. 예측모델의 적합도 평가에서는 87.9% 교차검증을 통한 예측정확도 평가 결과 84.8%로 두 평가 결과간의 큰 차이를 보이지 않으며 좋은 성능의 결과를 산출하였다. 이는 산사태와 관련성이 높은 유발인자와 예측모델 성능에서 기인된 결과로 해석 될 수 있다.

보완된 카이-제곱 기법을 이용한 단백질 기능 예측 기법 (Fucntional Prediction Method for Proteins by using Modified Chi-square Measure)

  • 강태호;유재수;김학용
    • 한국콘텐츠학회논문지
    • /
    • 제9권5호
    • /
    • pp.332-336
    • /
    • 2009
  • 유전체 분석에서 중요한 부분 중 하나는 기능이 알려지지 않은 미지 단백질에 대한 기능 예측이다. 단백질-단백질 상호작용 네트워크를 분석하는 것은 미지 단백질에 대한 기능을 보다 쉽게 예측할 수 있게 한다. 단백질-단백질 상호작용 네트워크로부터 미지 단백질의 기능을 예측하기 위한 다양한 연구들이 시도되어 왔다. 카이-제곱(Chi-square) 방식은 단백질-단백질 상호작용 네트워크를 통해 기능을 예측하고자 하는 연구 중 대표적인 방식이다. 하지만 카이-제곱 방식은 네트워크의 토폴로지를 반영하지 않아 네트워크 크기에 따라 예측의 정확성이 떨어지는 문제점이 있다. 따라서 본 논문에서는 카이-제곱 방식을 보완하여 정확성을 높인 새로운 기능 예측 방법을 제안한다 이를 위해 MIPS, DIP 그리고 SGD와 같은 공개된 단백질 상호작용 데이터베이스들로부터 데이터를 수집하여 분석하였다. 그리고 제안된 방식의 우수성을 입증하기 위해 각 데이터베이스들에 대해 카이-제곱방식과 제안하는 보완된 카이-제곱(Modified Chi-square)방식으로 예측해보고 이들의 정확성을 평가하였다.

익스트림 그라디언트 부스팅을 이용한 지수/주가 이동 방향 예측 (Prediction of the Movement Directions of Index and Stock Prices Using Extreme Gradient Boosting)

  • 김형도
    • 한국콘텐츠학회논문지
    • /
    • 제18권9호
    • /
    • pp.623-632
    • /
    • 2018
  • 주가 이동 방향의 정확한 예측이 주식 매매에 관한 전략적 의사결정에 중요한 역할을 할 수 있기 때문에 투자자와 연구자 모두의 관심이 높다. 주가 이동 방향에 관한 기존 연구들을 종합해보면, 주식 시장에 따라서 그리고 예측 기간에 따라서 다양한 변수가 고려되고 있음을 알 수 있다. 이 연구에서는 한국 주식 시장을 대표하는 지수와 주식들을 대상으로 이동 방향 예측 기간에 따라서 어떤 데이터마이닝 기법의 성능이 우수한 것인지를 분석하고자 하였다. 특히, 최근 공개경쟁에서 활발히 사용되며 그 우수성이 입증되고 있는 익스트림 그라디언트 부스팅 기법을 주가 이동 방향 예측 문제에 적용하고자 하였으며, SVM, 랜덤 포리스트, 인공 신경망과 같이 기존 연구에서 우수한 것으로 보고된 데이터마이닝 기법들과 비교하여 분석하였다. 12년간 데이터를 사용하여 1일 후에서 5일 후까지의 이동 방향을 예측하는 실험을 통해서, 예측 기간과 종목에 따라서 선택된 변수들에 차이가 있으며, 1-4일 후 예측에서는 익스트림 그라디언트 부스팅이 다른 기법들과 부분적으로 동등함을 가지면서도 가장 우수함을 확인하였다.