• Title/Summary/Keyword: Association Mining

검색결과 1,061건 처리시간 0.023초

Generalized Fuzzy Quantitative Association Rules Mining with Fuzzy Generalization Hierarchies

  • Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.210-214
    • /
    • 2002
  • Association rule mining is an exploratory learning task to discover some hidden dependency relationships among items in transaction data. Quantitative association rules denote association rules with both categorical and quantitative attributes. There have been several works on quantitative association rule mining such as the application of fuzzy techniques to quantitative association rule mining, the generalized association rule mining for quantitative association rules, and importance weight incorporation into association rule mining fer taking into account the users interest. This paper introduces a new method for generalized fuzzy quantitative association rule mining with importance weights. The method uses fuzzy concept hierarchies fer categorical attributes and generalization hierarchies of fuzzy linguistic terms fur quantitative attributes. It enables the users to flexibly perform the association rule mining by controlling the generalization levels for attributes and the importance weights f3r attributes.

하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출 (Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism)

  • 김진성
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구 (A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks)

  • 김진성
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

Encoding of XML Elements for Mining Association Rules

  • Hu Gongzhu;Liu Yan;Huang Qiong
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제14권3호
    • /
    • pp.37-47
    • /
    • 2005
  • Mining of association rules is to find associations among data items that appear together in some transactions or business activities. As of today, algorithms for association rule mining, as well as for other data mining tasks, are mostly applied to relational databases. As XML being adopted as the universal format for data storage and exchange, mining associations from XML data becomes an area of attention for researchers and developers. The challenge is that the semi-structured data format in XML is not directly suitable for traditional data mining algorithms and tools. In this paper we present an encoding method to encode XML tree-nodes. This method is used to store the XML data in Value Table and Transaction Table that can be easily accessed via indexing. The hierarchical relationship in the original XML tree structure is embedded in the encoding. We applied this method to association rules mining of XML data that may have missing data.

  • PDF

목표 속성을 고려한 연관규칙과 분류 기법 (Directed Association Rules Mining and Classification)

  • 한경록;김재련
    • 산업경영시스템학회지
    • /
    • 제24권63호
    • /
    • pp.23-31
    • /
    • 2001
  • Data mining can be either directed or undirected. One way of thinking about it is that we use undirected data mining to recognize relationship in the data and directed data mining to explain those relationships once they have been found. Several data mining techniques have received considerable research attention. In this paper, we propose an algorithm for discovering association rules as directed data mining and applying them to classification. In the first phase, we find frequent closed itemsets and association rules. After this phase, we construct the decision trees using discovered association rules. The algorithm can be applicable to customer relationship management.

  • PDF

Hybrid Intelligent Web Recommendation Systems Based on Web Data Mining and Case-Based Reasoning

  • Kim, Jin-Sung
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.366-370
    • /
    • 2003
  • In this research, we suggest a hybrid intelligent Web recommendation systems based on Web data mining and case-based reasoning (CBR). One of the important research topics in the field of Internet business is blending artificial intelligence (AI) techniques with knowledge discovering in database (KDD) or data mining (DM). Data mining is used as an efficient mechanism in reasoning for association knowledge between goods and customers' preference. In the field of data mining, the features, called attributes, are often selected primary for mining the association knowledge between related products. Therefore, most of researches, in the arena of Web data mining, used association rules extraction mechanism. However, association rules extraction mechanism has a potential limitation in flexibility of reasoning. If there are some goods, which were not retrieved by association rules-based reasoning, we can't present more information to customer. To overcome this limitation case, we combined CBR with Web data mining. CBR is one of the AI techniques and used in problems for which it is difficult to solve with logical (association) rules. A Web-log data gathered in real-world Web shopping mall was given to illustrate the quality of the proposed hybrid recommendation mechanism. This Web shopping mall deals with remote-controlled plastic models such as remote-controlled car, yacht, airplane, and helicopter. The experimental results showed that our hybrid recommendation mechanism could reflect both association knowledge and implicit human knowledge extracted from cases in Web databases.

데이터마이닝과 사례기반추론 기법에 기반한 인터넷 구매지원 시스템 구축에 관한 연구 (A Study on the Development of Internet Purchase Support Systems Based on Data Mining and Case-Based Reasoning)

  • 김진성
    • 한국경영과학회지
    • /
    • 제28권3호
    • /
    • pp.135-148
    • /
    • 2003
  • In this paper we introduce the Internet-based purchase support systems using data mining and case-based reasoning (CBR). Internet Business activity that involves the end user is undergoing a significant revolution. The ability to track users browsing behavior has brought the vendor and end customer's closer than ever before. It is now possible for a vendor to personalize his product message for individual customers at massive scale. Most of former researchers, in this research arena, used data mining techniques to pursue the customer's future behavior and to improve the frequency of repurchase. The area of data mining can be defined as efficiently discovering association rules from large collections of data. However, the basic association rule-based data mining technique was not flexible. If there were no inference rules to track the customer's future behavior, association rule-based data mining systems may not present more information. To resolve this problem, we combined association rule-based data mining with CBR mechanism. CBR is used in reasoning for customer's preference searching and training through the cases. Data mining and CBR-based hybrid purchase support mechanism can reflect both association rule-based logical inference and case-based information reuse. A Web-log data gathered in the real-world Internet shopping mall is given to illustrate the quality of the proposed systems.

연관성 모델에 기반한 오피년마이닝 시스템의 설계 및 구현 (Design and Implementation of Opinion Mining System based on Association Model)

  • 김근형
    • 한국정보통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.133-140
    • /
    • 2011
  • 특정 제품이나 서비스에 대한 네티즌의 의견들은 고객들의 구매 행위에서의 참고대상일 뿐만 아니라 기업 입장에서도 마케팅이나 경영전략을 수립하기 위한 중요한 자료가 될 수 있기 때문에 온라인 고객리뷰를 분석하는 것은 매우 중요하다. 본 논문에서는 비정형(unformatted) 데이터형인 자연어(natural language) 형태로 웹상에 게시된 고객 의견들을 분석할 수 있는 새로운 오피년마이닝 기법을 제안한다. 기존 데이터마이닝 기법 중의 하나인 연관규칙탐사 기법을 수정하여 오피년마이닝 과정에 보다 효율적이고 효과적으로 적용하기 위한 방안을 고찰하고 이를 기반으로 실제 시스템을 설계하고 구현하였다.

트랜잭션 연결 구조를 이용한 빈발 Closed 항목집합 마이닝 알고리즘 (An Efficient Algorithm for Mining Frequent Closed Itemsets Using Transaction Link Structure)

  • 한경록;김재련
    • 대한산업공학회지
    • /
    • 제32권3호
    • /
    • pp.242-252
    • /
    • 2006
  • Data mining is the exploration and analysis of huge amounts of data to discover meaningful patterns. One of the most important data mining problems is association rule mining. Recent studies of mining association rules have proposed a closure mechanism. It is no longer necessary to mine the set of all of the frequent itemsets and their association rules. Rather, it is sufficient to mine the frequent closed itemsets and their corresponding rules. In the past, a number of algorithms for mining frequent closed itemsets have been based on items. In this paper, we use the transaction itself for mining frequent closed itemsets. An efficient algorithm is proposed that is based on a link structure between transactions. Our experimental results show that our algorithm is faster than previously proposed methods. Furthermore, our approach is significantly more efficient for dense databases.

연관규칙과 순차패턴을 이용한 프로세스 마이닝 (A Process Mining using Association Rule and Sequence Pattern)

  • 정소영;권수태
    • 산업경영시스템학회지
    • /
    • 제31권2호
    • /
    • pp.104-111
    • /
    • 2008
  • A process mining is considered to support the discovery of business process for unstructured process model, and a process mining algorithm by using the associated rule and sequence pattern of data mining is developed to extract information about processes from event-log, and to discover process of alternative, concurrent and hidden activities. Some numerical examples are presented to show the effectiveness and efficiency of the algorithm.