• Title/Summary/Keyword: Assignment Model

Search Result 550, Processing Time 0.028 seconds

Dynamic traffic assignment based on arrival time-based OD flows (도착시간 기준 기종점표를 이용한 동적통행배정)

  • Kim, Hyeon-Myeong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.143-155
    • /
    • 2009
  • A dynamic traffic assignment (DTA) has recently been implemented in many practical projects. The core of dynamic model is the inclusion of time scale. If excluding the time dimension from a DTA model, the framework of a DTA model is similar to that of static model. Similar to static model, with given exogenous travel demand, a DTA model loads vehicles on the network and finds an optimal solution satisfying a pre-defined route choice rule. In most DTA models, the departure pattern of given travel demand is predefined and assumed as a fixed pattern, although the departure pattern of driver is changeable depending on a network traffic condition. Especially, for morning peak commute where most drivers have their preferred arrival time, the departure time, therefore, should be modeled as an endogenous variable. In this paper, the authors point out some shortcomings of current DTA model and propose an alternative approach which could overcome the shortcomings of current DTA model. The authors substitute a traditional definition for time-dependent OD table by a new definition in which the time-dependent OD table is defined as arrival time-based one. In addition, the authors develop a new DTA model which is capable of finding an equilibrium departure pattern without the use of schedule delay functions. Three types of objective function for a new DTA framework are proposed, and the solution algorithms for the three objective functions are also explained.

A Network-Based Model for Estimating the Market Share of a High-Speed Rail System in the Korean NW-SE Corridor (네트워크 기반모델을 이용한 서울-부산간 고속철도 개통 후의 교통수단별 시장점유율 예측)

  • Gang-Len Chang
    • Proceedings of the KOR-KST Conference
    • /
    • 2003.02a
    • /
    • pp.127-150
    • /
    • 2003
  • This research presents a novel application of static traffic assignment methods, but with a variable time value, for estimating the market share of a high-speed rail (HSR) in the NW-SE corridor of Korea which is currently served by the airline (AR), conventional rail (CR), and highway (HWY) modes. The proposed model employs the time-space network structure to capture the interrelations among all competing transportation modes, and to reflect their supply- and demand-sides constraints as well as interactions through properly formulated link-node structures. The embedded cost function for each network link offers the flexibility for incorporating all associated factors, such as travel time and fare, in the model computation, and enables the use of a distribution rather than a constant to represent the time-value variation among all transportation mode users. To realistically capture the tripmakers' value-of-time (VOT) along the target area, a novel method for VOT calibration has been developed with aggregate demand information and key system performance data from the target area. Under the assumption that intercity tripmakers often have nearly "perfect" travel information, one can solve the market share of each mode after operations of HSR for each O-D pair under the time-dependent demand with state-of-the-art traffic assignment. Aside from estimating new market share, this paper also investigated the impacts of HSR on other existing transportation modes.

  • PDF

A Study on The Adaptive Robust Servocontroller (견실한 서보적응제어기에 관한 연구)

  • 김종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.513-525
    • /
    • 1990
  • This paper presents Adaptive Robust Servocontrol(ARSC) scheme, which is an explicit(or indirect) pole-assignment adaptive algorithm with the property of "robustness". It guarantees asymptotic regulation and tracking in the presence of finite parameter perturbations of the unknown plant(or process) model. The controller structure is obtained by transforming a robust control theory into an adaptive control version. This controller structure is combined with the model estimation algorithm which includes a dead-zone for bounded noise. It is proved theoretically that this combination of control and identification is globally convergent and stable. It is also shown, through a real-time simulation study, that the desired closed-loop poles of the augmented system can be assigned directly, and that the adjustment mechanism of the scheme tunes the controller parameters according to the assigned closed-loop poles.oop poles.

Scheduling of Sporadic and Periodic Tasks and Messages with End-to-End Constraints

  • Kim, Hyoung-Yuk;Kim, Sang-Yong;Oh, Hoon;Park, Hong-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.747-752
    • /
    • 2004
  • Researches about scheduling of the distributed real-time systems have been proposed. However, they have some weak points, not scheduling both sporadic and periodic tasks and messages or being unable to guaranteeing the end-to-end constraints due to omitting precedence relations between sporadic tasks. So this paper proposes a new scheduling method for distributed real-time systems consisting of sporadic and periodic tasks with precedence relations and sporadic and periodic messages, guaranteeing end-to-end constraints. The proposed method is based on a binary search-based period assignment algorithm, an end-to-end laxity-based priority assignment algorithm, and three kinds of schedulability analysis, node, network, and end-to-end schedulability analysis. In addition, this paper describes the application model of sporadic tasks with precedence constraints in a distributed real-time system, shows that existing scheduling methods such as Rate Monotonic (RM) scheduling are not proper to be applied to the system having sporadic tasks with precedence constraints, and proposes an end-to-end laxity-based priority assignment algorithm.

  • PDF

A Multi-Objective Differential Evolution for Just-In-Time Door Assignment and Truck Scheduling in Multi-door Cross Docking Problems

  • Wisittipanich, Warisa;Hengmeechai, Piya
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.299-311
    • /
    • 2015
  • Nowadays, the distribution centres aim to reduce costs by reducing inventory and timely shipment. Cross docking is a logistics strategy in which products delivered to a distribution centre by inbound trucks are directly unloaded and transferred to outbound trucks with minimum warehouse storage. Moreover, on-time delivery in a distribution network becomes very crucial especially when several distribution centres and customers are involved. Therefore, an efficient truck scheduling is needed to synchronize the delivery throughout the network in order to satisfy all stake-holders. This paper presents a mathematical model of a mixed integer programming for door assignment and truck scheduling in a multiple inbound and outbound doors cross docking problem according to Just-In-Time concept. The objective is to find the schedule of transhipment operations to simultaneously minimize the total earliness and total tardiness of trucks. Then, a multi-objective differential evolution (MODE) is proposed with an encoding scheme and four decoding strategies, called ITSH, ITDD, OTSH and OTDD, to find a Pareto frontier for the multi-door cross docking problems. The performances of MODE are evaluated using 15 generated instances. The numerical experiments demonstrate that the proposed algorithm is capable of finding a set of diverse and high quality non-dominated solutions.

B-DCS Fiber-Optic Network Design Algorithm Considering Network Survivability (생존도가 보장된 B-DCS 광전송망 설계 알고리즘)

  • 이인행;이영옥;정순기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1899-1909
    • /
    • 1999
  • Considering survivability in fiber-optic transmission networks using B-DCS(Broadband Digital Cross-connect System), a network design problem consists of WCAP(Working Channel Assignment Problem) and SCAP(Spare Channel Assignment Problem). WCAP has not been studied intensively as a part of a network design problem to minimize total network cost while SCAP has been studied in the several papers as an independent problem. In this study, we developed a WSCAP(Working and Spare Channel Assignment Problem) algorithm which is to minimize the total number of spare channels and working channels. After problem description, an IP(Integer Programming) model is formulated and several heuristic algorithms are presented. Finally, the result of a case study is described.

  • PDF

Deep CNN based Pilot Allocation Scheme in Massive MIMO systems

  • Kim, Kwihoon;Lee, Joohyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4214-4230
    • /
    • 2020
  • This paper introduces a pilot allocation scheme for massive MIMO systems based on deep convolutional neural network (CNN) learning. This work is an extension of a prior work on the basic deep learning framework of the pilot assignment problem, the application of which to a high-user density nature is difficult owing to the factorial increase in both input features and output layers. To solve this problem, by adopting the advantages of CNN in learning image data, we design input features that represent users' locations in all the cells as image data with a two-dimensional fixed-size matrix. Furthermore, using a sorting mechanism for applying proper rule, we construct output layers with a linear space complexity according to the number of users. We also develop a theoretical framework for the network capacity model of the massive MIMO systems and apply it to the training process. Finally, we implement the proposed deep CNN-based pilot assignment scheme using a commercial vanilla CNN, which takes into account shift invariant characteristics. Through extensive simulation, we demonstrate that the proposed work realizes about a 98% theoretical upper-bound performance and an elapsed time of 0.842 ms with low complexity in the case of a high-user-density condition.

Topological Analysis of the Feasibility and Initial-value Assignment of Image Segmentation (영상 분할의 가능성 및 초기값 배정에 대한 위상적 분석)

  • Doh, Sang Yoon;Kim, Jungguk
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.812-819
    • /
    • 2016
  • This paper introduces and analyzes the theoretical basis and method of the conventional initial-value assignment problem and feasibility of image segmentation. The paper presents topological evidence and a method of appropriate initial-value assignment based on topology theory. Subsequently, the paper shows minimum conditions for feasibility of image segmentation based on separation axiom theory of topology and a validation method of effectiveness for image modeling. As a summary, this paper shows image segmentation with its mathematical validity based on topological analysis rather than statistical analysis. Finally, the paper applies the theory and methods to conventional Gaussian random field model and examines effectiveness of GRF modeling.

A slot assignment method in the container yard for export containers considering their weights (무게를 고려한 수출 컨테이너의 장치위치 결정법)

  • Kim, Kap-Hwan;Park, Young-Man
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.4
    • /
    • pp.753-770
    • /
    • 1996
  • In order to reduce the number of rehandles during the loading operation of export containers in port container terminals, the storage location of each arriving container should be determined considering of its weight. We formulate the problem by a dynamic programming model to get the optimal storage location. And a heuristic rule is suggested in order to overcome computational difficulties of the optimization model. The performance of the rule is evaluated by comparing it with the result of DP model.

  • PDF

Path-based Dynamic User Equilibrium Assignment Model using Simulation Loading Method (시뮬레이션 부하기법을 이용한 경로기반 동적통행배정모형의 개발)

  • 김현명;임용택;백승걸
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.3
    • /
    • pp.101-113
    • /
    • 2001
  • Since late 1970s. one of the principal research areas in transportation problem is dynamic traffic assignment (DTA). Although many models have been developed regarding DTA, yet they have some limits of describing real traffic patterns. This reason comes from the fact that DTA model has the time varying constraints such as state equation, flow propagation constraint, first in first out(FIFO) rule and queuing evolution. Thus, DTA model should be designed to satisfy these constraints as well as dynamic route choice condition, dynamic user equilibrium. In this respect, link-based DTA models have difficulty in satisfying such constraints because they have to satisfy the constraints for each link, while path-based DTA models may easily satisfy them. In this paper we develop a path-based DTA model. The model includes point queue theory to describe the queue evolution and simulation loading method for depicting traffic patterns in more detail. From a numerical test, the model shows promising results.

  • PDF