• Title/Summary/Keyword: Assembly design

Search Result 1,645, Processing Time 0.029 seconds

Establishment of the design stress intensity value for the plate-type fuel assembly using a tensile test

  • Kim, Hyun-Jung;Tahk, Young-Wook;Jun, Hyunwoo;Kong, Eui-Hyun;Oh, Jae-Yong;Yim, Jeong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.911-919
    • /
    • 2021
  • In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths, Young's modulus and the elongation, are measured with the temperatures. The empirical equations of the material properties with respect to the temperature are presented. The cladding undergoes several heat treatments and hardening processes during the fabrication process. Cladding strengths are reduced compared to those of the raw material during annealing. Up to a temperature of 150 ℃, the strengths of the cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 ℃, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocation recovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95% confidence level, the design stress intensities of the cladding and structural materials are established. The presented design stress intensity values become the basis of the stress design criteria for a safety analysis of plate-type fuels.

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.

Maximizing Use of Common Parts in Complex System Design through Organizing 3D Design Process (3D 설계 프로세스 정립을 통한 복잡한 시스템 설계에서의 공용부품 사용 극대화)

  • Choi, Y.W.;Park, K.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.3
    • /
    • pp.209-219
    • /
    • 2007
  • Designing a complex system such as an LCD developing system becomes inefficient when many designers are involved and create their own parts even though they can be used repeatedly in other sections. Thus, this paper proposes a new design process that can maximize the number of common parts in complex system design by organizing the 3D design process. The proposed design process consists of 5 stages: analysis of design intention, definition of initial product structure, definition of skeleton model, sharing design intention with all assembles, control of correlation between components. The proposed design process can maximize common parts in design process, which results in shorter lead time, less production cost, and greater economic benefits.

Development of Gap Searching System for Car Body Assembly by Decomposition Model Representation (분해 모델을 이용한 자동차 차체의 틈새 탐색 시스템 개발)

  • Bae, Won-Jung;Lee, Sung-Hoon;Park, Sung-Bae;Jung, Yoong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.109-118
    • /
    • 2012
  • Large number of part design for aircraft and automobile is preceded by functional or sectional design groups for efficiency. However, interferences and gaps can be found when the parts and sub-assemblies by those design groups are to be assembled. These interferences and gaps cause design changes and additional repair processes. While interference problem has been resolved by digital mockup and concurrent engineering methodology, gap problem has been covered by temporary treatment of filling gap with sealant. This kind of fast fix causes fatal problem of leakage when the gap is too big for filling or the treatment gets old. With this research, we have developed a program to find the gap automatically among parts of assembly so that users can find them to correct their design before manufacturing stage. By using decomposition model representation method, the developed program can search the gap among complex car body parts to be visualized with volumetric information. It can also define the boundary between the gap and exterior empty space automatically. Though we have proved the efficiency of the developed program by applying to automobile assembly, application of the program is not limited to car body only, but also can be extended to aircraft and ship design of large number of parts.

Development of Virtual Prototype for Separator Winding and Inserting Machine of Battery Assembly Line (건전지 세퍼레이터 와인딩 및 삽입시스템의 Virtual Prototype 개발)

  • 정상화;차경래;신병수;나윤철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.727-730
    • /
    • 2002
  • Most of battery industries are growing explosively as a core strategy industry for the development of the semi-conductor, the LCD, and the mobile communication device. Dynamic characteristic analysis consists of dynamic behavior analysis and finite element analysis and is necessary for effective design of machines. In the dynamic behavior analysis, the displacement, velocity, applied force and angular velocity of each components are simulated according to each part. In the FEA, stress analysis, mode analysis, and frequency analysis are performed far each part. The results of these simulations are used for the design specification investigation and compensation for optimal design of cell manufacturing line. Virtual Engineering of the separator inserting machine on the automatic cell assembly line systems are modeled and simulated. 3D motion behavior is visualized under real-operating condition on the computer window. Virtual Prototype make it possible to save time by identifying design problems early in development, cut cost by reducing making hardware prototype, and improve quality by quickly optimizing full-system performance. As the first step of CAE which integrates design, dynamic modeling using ADAMS and FEM analysis using NASTRAN are developed.

  • PDF

Basic Study on the Assembly Process Design of Curtain-wall System for Minimization of Carbon Emission

  • Yi, June-Seong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.648-663
    • /
    • 2012
  • With recent attempts to improve quality and productivity, the prefabrication manufacturing system has been occupying an increasing share of the construction area. To minimize site work, material is more frequently being produced and partially assembled at a plant, and then installed at a site. For this reason, the production process is being divided and the materials are being delivered to the site after passing through multiple plants. With these changes in the production process, the materials delivery plan is becoming an important management point. In particular, as road transportation using trucks has a 71 percent share of the domestic transportation market, selecting the proper transportation path is important when delivering materials and equipment to a site. But the management system at the project design phase to calculate the delivery cost by considering the production process of the pre-fab material and the $CO_2$ emission at the material delivery phase is currently lacking. This study suggests a process design model for assembly production of the pre-fab material and transportation logistics based on carbon emission. The suggested model can be helpful to optimize the location of the intermediate plant. It is expected to be utilized as a basic model at the project plan and design phase when subcontractors make decisions on items such as materials procurement, selecting the production method, and choosing the location of the assembly plant.

Development of Design Capabilities for Cylinder and Jig Base in a 3-D Jig Design System for Automobile Body Assembly (차체 조립용 3차원 지그 설계 시스템에서의 실린더 및 베이스 설계 프로그램 개발)

  • 조병철;이상헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1475-1478
    • /
    • 2003
  • This paper introduces the development of design capabilities for air cylinders and jig bases in a three-dimensional jig design system for automobile body assembly. We first built the standard part library for these parts, and then developed the dedicated 3D design capabilities based on the Unigraphics system. By using this 3-D jig design system, design can be performed more intuitively, and verification and simulation of design results can be done more easily as the 3-D design result can be used readily for virtual manufacturing simulation.

  • PDF

Implementation of AR based Assembly System for Car C/pad Assembly (차체 C/Pad 조립을 위한 증강현실 기반의 조립시스템 구현)

  • Park, Hong-Seok;Choi, Hung-Won;Park, Jin-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.37-44
    • /
    • 2008
  • Nowadays, the increasing global competition forces manufacturer to reduce the cost and time for implementation of manufacturing system. The AR(augmented reality) technology as a new human-machine interface introduces a noteworthy perspective for a new manufacturing system design. Using AR technology, a physically existing production environment can be superimposed with virtual planning objects. Therefore, the planning tasks can be validated without modeling the surrounding environment of the production domain during short process planning time. In this paper, we introduce the construction of AR browser and determine the optimal environment parameters for field application of AR system through lots of tests. And, many methods such as multi-marker coordinate system, division of virtual objects and so on, are proposed in order to solve the problems suggested from initial field test. Based on these tests and results, the test-bed of C/Pad assembly system is configured and robot program for C/Pad assembly is generated based on AR system.

Independent Cell Formation Considering Operation Sequences and Machine Capacity in Flexible Assembly Systems (작업 순서와 기계 용량을 고려하는 유연조립 시스템의 독립 셀형성)

  • 노인규;최형호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.253-261
    • /
    • 1996
  • In optimizing the layout design of a multi-product assembly environment, tile analysis of the material flow is a vital ingredient. In flexible assembly systems, assembly time is usually very short thus the transfer time is relatively more important Therefore operations sequence must be so determined, that have no backtracking operations as possible as, It is important to form cells, so that they have no intercell movement in curring much processing delay, and to arrange machines as possible as densly. This study presents a independent cell formation method considering operation sequences and machine capacity in flexible assembly systems.

  • PDF

Development of Virtual Assembly Process for the Fabrication of Micro-fluidic Systems Using Micro-stereolithography Technology (마이크로 광 조형 기술을 이용하여 미세 유체 시스템을 개발하기 위한 가상 조립 공정의 개발)

  • 강현욱;이인환;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.304-309
    • /
    • 2004
  • As it is difficult to construct a micro-fluidic system composed of micro-mixers, micro-channels and/or micro-chambers in a single process, an assembly process is typically used. The assembling and bonding of micro-parts, however, introduces other problems. In this work, a virtual assembly process was developed that can be used to design various micro-fluidic systems before actual fabrication commences. In the process, the information required for the micro-stereolithography process is generated automatically. Consequently, complex micro-fluidic systems can be fabricated in a single process, thereby avoiding the need for additional assembly or bonding processes. Using the developed process, several examples were fabricated.

  • PDF