• Title/Summary/Keyword: Assembly Matrix

Search Result 106, Processing Time 0.026 seconds

Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems

  • Tan, Guojin;Shan, Jinghui;Wu, Chunli;Wang, Wensheng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.551-565
    • /
    • 2017
  • In this paper, an analytical approach is proposed for determining vibration characteristics of cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems. This method is based on the Timoshenko beam theory, transfer matrix method and numerical assembly method to obtain natural frequencies and mode shapes. Firstly, the beam is considered to be divided into several segments by spring-mass systems and support points, and four undetermined coefficients of vibration modal function are contained in each sub-segment. The undetermined coefficient matrices at spring-mass systems and pinned supports are obtained by using equilibrium and continuity conditions. Then, the overall matrix of undetermined coefficients for the whole vibration system is obtained by the numerical assembly technique. The natural frequencies and mode shapes of a cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems are obtained from the overall matrix combined with half-interval method and Runge-Kutta method. Finally, two numerical examples are used to verify the validity and reliability of this method, and the effects of cracks on the transverse vibration mode shapes and the rotational mode shapes are compared. The influences of the crack location, depth, position of spring-mass system and other parameters on natural frequencies of non-uniform continuous Timoshenko beam are discussed.

Hybrid position/force control in the same direction for assembly operation in variable friction environment (마찰이 있는 조립작업을 위한 동일 방향 혼합위치/힘 제어)

  • 김상연;권동수;김문상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.253-256
    • /
    • 1997
  • This paper proposes a control strategy of position and force control in the same direction based on hybrid position/force control. In order to control position and force in the same direction, a weighting matrix is introduced instead of a selection matrix suggested by Raibert and Craig. The major part of the controller output comes from the position controller when a position control error is large, from the force controller when a position control error is large. The proposed algorithm is implemented by the simulation and experiment focusing on the peg-in-hole task where friction exist significantly and is not constant. It also adopts and event control scheme for more efficient performance.

  • PDF

On the natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of concentrated elements

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.531-550
    • /
    • 2008
  • This paper adopts the numerical assembly method (NAM) to determine the exact solutions of natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and springmass systems. First, the coefficient matrix for an intermediate station with various concentrated elements, cross-section change and/or pinned support and the ones for the left-end and right-end supports of a beam are derived. Next, the overall coefficient matrix for the entire beam is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact solutions for the natural frequencies of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and the associated mode shapes are obtained by substituting the corresponding values of integration constants into the associated eigenfunctions.

Reconfiguration of Automobile Assembly System using Augmented Reality Technology (증강현실을 이용한 차체 조립시스템의 재구성)

  • Choi, Hung-Won;Park, Jin-Woo;Jeong, Sang-Yeong;Park, Hong-Seok;Ko, Sung-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.875-882
    • /
    • 2010
  • Nowadays, the global market requires a variety of products and shorter life cycle to fulfill the diverse demands of customers. To survive in the turbulent and competitive markets, automobile assembly companies must design and implement manufacturing systems that respond rapidly to market demands. In this paper, methods for reconfiguring system based on modular concept is proposed using AR(Augmented reality) technologies. First, the relationship matrixes between change drivers and system components are generated to divide existing manufacturing system to each module. And, new change drivers are selected based on required function in new system. Through the modification of relationship matrix, the concept design of new system is proposed and implemented in AR environment. Finally, according to proposed methods and procedure in this paper, the existing cockpit assembly system is reconfigured to spare tire assembly system as a case study. As the use of the modular-based reconfiguration method in AR environment, the time and cost for reconfiguring manufacturing system will be reduced dramatically.

Thermal Conductivity and Adhesion Properties of Thermally Conductive Pressure-Sensitive Adhesives

  • Kim, Jin-Kon;Kim, Jong-Won;Kim, Myung-Im;Song, Min-Seok
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.517-523
    • /
    • 2006
  • The effects of particle content, size and shape on the thermal conductivity (k) and adhesion properties of thermally conductive, pressure-sensitive adhesives (PSAs) were investigated. The matrix resins were thermally crosslinkable, 2-ethylhexyl acrylic polyol and ultraviolet (UV)-curable, random copolymer consisting of acrylic oligomer and various acrylates. We found that k increased with increasing diameter and particle aspect ratio, and was further enhanced due to the reduction of the interfacial thermal barrier when the coupling agent, which increases the adhesion between particles and the matrix resin, was used. On the other hand, adhesion properties such as peel strength and tack of the thermally crosslinkable resin decreased sharply with increasing particle content. However, for UV curable resin, increased particle addition inhibited the decrease in adhesion properties.

Printable organic TFT technologies for FPD applications

  • Ando, Masahiko
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.57-60
    • /
    • 2005
  • We have recently developed new organic TFT technologies such as self-aligned self-assembly (SALSA) process and a high-resolution color active-matrix LCD panel. A new method to realize high-resolution printable organic TFT array to drive active-matrix flat-panel display will be discussed.

  • PDF

On the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple point masses

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.351-367
    • /
    • 2005
  • Multi-span beams carrying multiple point masses are widely used in engineering applications, but the literature for free vibration analysis of such structural systems is much less than that of single-span beams. The complexity of analytical expressions should be one of the main reasons for the last phenomenon. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of a multi-span uniform beam carrying multiple point masses. First, the coefficient matrices for an intermediate pinned support, an intermediate point mass, left-end support and right-end support of a uniform beam are derived. Next, the overall coefficient matrix for the whole structural system is obtained using the numerical assembly technique of the finite element method. Finally, the natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the related eigenfunctions respectively. The effects of in-span pinned supports and point masses on the free vibration characteristics of the beam are also studied.

Fabrication and Characterisation of a Novel Pellicular Adsorbent Customised for the Effectvie Fluidised Bed Adsorption of Protein Products

  • Sun, Yam;Pacek, Andrzej W.;Nienow, Alvin W.;Lyddiatt, Andrew
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.6
    • /
    • pp.419-425
    • /
    • 2001
  • A dense pellicular solid matrix has been fabricated by coating 4% agarose gel on to dense zironia-silica(ZS) spheres by watr-in-oil emulsification . The agarose evenly laminated the ZS bead to a depth of 30㎛, and the resultin gpellicular assembly was characterised by densities up to 2.39g/mL and a mean particle dimeter of 136 ㎛. In comparative fluidisation tests, the pellicular solid phase exhibited a two-fold greater flow velocity than commercial benchmark ad-sorbents necessary to achieve common values of bed expansion. Furthermore, the perlicular parti-cles were characterised by improved qualities of chromatographic behaviour, particularly with re-spect to a three-fold increase in the apparent effective diffusivity of lysozyme within a pellicular assembly modified with Cibacron Blue 3GA. The properties of rapid protein adsorption/desorp-tion were attributed to the physical design and pellicular deployment of the reactive surface in the solid phase. When combined with enhanced feedstock throughput, such practical advantages recommend the pellicular assembly as a base matrix for the selective recovery of protein products from complex, particulate feedstocks(whole fermentation broths, cell disruptates and biological extracts).

  • PDF

Mechanical/Biochemical Analysis of Cell Adhesion Strengthening (세포흡착 거동의 기계적/생화학적 분석)

  • Shin, Heung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1455-1457
    • /
    • 2008
  • Cell adhesion is a coordinated process involving initial binding of integrin receptors to extracellular matrix (ECM), recruitment of adhesion proteins, and focal adhesion assembly. The formation of mechanically stable focal adhesion assembly of cells within surrounding ECM is a key parameter to direct numerous cellular functions including cell migration, differentiation, and apotosis. With current cell adhesion assays, it is difficult to understand contributions of each coordinated event on evolution of cell adhesion strengthening since cells spontaneously spread upon their adhesion to the substrate, thus remodeling their cytoskeletal structure. In this presentation, novel approaches for analysis of cell adhesion strengthening process based on the combination of mechanical device, micro-patterned substrates, and molecular biological techniques will be discussed.

  • PDF

Topology Optimization of a Lightweight Multi-material Cowl Cross Member Using Matrix Input with the Craig Bampton Nodal Method

  • Son, Dong il;So, Sangwoo;Choi, Dong hyuk;Kim, Daeil
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.243-248
    • /
    • 2019
  • As demand of light weight in the automotive industry has increased, the cowl cross member has been investigated using various methods to change the material. Conventionally, a cowl cross member has been made of steel and aluminum, but recently researchers tested multi-material such as aluminum and plastic. We studied a new model of the cowl cross member made of composite and non ferrous materials. For products with a high degree of freedom in design, generally, the method of topology optimization is advantageous and for the partial bracket part of the cowl cross member had a degree of freedom in the design, a topology optimization is appropriate. Considering the characteristics of the cowl cross members, we need research to minimize the weight while having the performance of noise, vibration and harshness(NVH). Taking the mounting status of the product into consideration, we used an assembly model to optimize the cowl cross member. But this method took too much time so we considered simple cowl cross member assemble conditions using the direct matrix input method(DMI) with the Craig-Bampton Nodal Method. This method is capable of considering the status of the assembly without assembling the model, which reduced the solving time and increased the accuracy comparison with a cowl cross member without DMI.