• Title/Summary/Keyword: Asplanchna

Search Result 6, Processing Time 0.018 seconds

Population Dynamics of Predator (Asplanchna spp.) and its Impact on Herbivorous Rotifers Community in Three Tributaries of the Nakdong River (S. Korea) (낙동강(한국)의 세 지류에서 포식 윤충류 개체군 동태 및 초식 윤충류 군집에 미치는 영향)

  • Kim, Hyun-Woo;Chang, Kwang-Hyeon;Shin, Woon-Kyun;La, Geung-Hwan;Jeong, Kwang-Seuk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.385-393
    • /
    • 2004
  • The herbivorous rotifers community (Brachionus spp.) and population dynamics of the predator rotifer (Asplanchna spp.) in three tributaries (Kumho R., Nam R., and Hwang R.) of the Nakdong River were evaluated on biweekly intervals from Jan. 2001 and Dec. 2002. High abundance of the herbivorous rotifers (peak density: - ca.>1000 Ind. $L^{-1}$) was observed from two tributaries (Kumho R. and Nam R.) during the spring and fall seasons, respectively. The high peaks of herbivorous rotifers were not evident in one tributary (Hwang R.). Among the herbivorous rotifers, brachionid rotifers (Brachionus spp. consisting of 7 species) were the characteristic rotifer community in this study. Brachionus spp. tended to occur together with the other perennial species, Asplanchna. Asplanchna was also present while two species of B. angularis and B. calyciflorus were highest in density. Subsequently, two populations (B. angularis and B. calyciflorus) rapidly declined, becoming rare after high peaks of Asplanchna occurred, except in one tributary (Hwang R.). We found community shifts in rotifer groups in mid-spring and mid-fall at the study site. The Asplanchna population could be appeared to play an important role in regulating the rotifer community and total plankton biomass in spring and fall at high trophic levels.

Change of Rotifers Community by Salinity in the Lower Seomjin River System, Korea (섬진강 하류계에서의 염분도에 따른 윤충류 군집의 변화)

  • Kim, Kwang-Soo;Lee, Jong-Bin;Lee, Kwan-Sik;Yoo, Hyung-Bin
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.162-175
    • /
    • 2000
  • The present study was carried out to clarify the distribution of rotifera with salinity variation during the period from February 1998 to July 1999. Rotifera consists of 27 genera and 88 species, from the maximum occurrence of 39 species in November, 1998 to the minimum of 21 species March, 1998. With 32 dominant species, Keratella cochlearis cochlearis, K. cochlearis f. tecta, Ascomorpha saltans saltans and Asplanchna (s. str.) priodonta priodonta occurred predominantly. Distribution of Rotifera related to salinity showed that 36 species occurred in the freshwater zone, 3 species in the mixo-oligohaline zone ($0.5{\sim}5.0%_o$) and mixo-mesohaline zone ($5.1{\sim}28.0%_o$) respectively, on the other hand 2 species (Asplanhna (s. str.) priodonta priodonta, Synchaeta oblonga) in all zones. Average abundance by salinity ranged from $1,273\;ind./m^3$ ($25.0{\sim}28.0%_o$ to $16,259\;ind./m^3$ ($15.1{\sim}20.0%_o$. The percentage composition calculated effect by stepwise multiple regression of the pearson correlation coefficient value of environmental factors and Rotifera abundance (station $1{\sim}4$) revealed that it was 74.32% in BOD, 72.15% in COD, 69.77% in conductivity, 65.87% in $Cl^-$ and 58.27% in chlorophyll a. Also, (Station $5{\sim}12$) revealed 9.11% in $Cl^-$, 7.67% in TP and 6.20% in chlorophyll a.

  • PDF

Zooplankton Fauna of Lake Sochonji and Chonji on the Top of Mt. Paektu (백두산 천지 및 소천지의 동물플랑크톤)

  • 유형빈
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_2
    • /
    • pp.565-573
    • /
    • 1998
  • In order to clarify the species composition of freshwater zooplankton community inhabiting Lake Sochonji and chonji on the top of Mt. Paektu, the present study have been carried out based on the materials collected during the periods from 24 to 25 July, 1997. As a result of examing the specimens, from the Lake Chonji, a total of 10 species (Keratella cochlearis cochlearis, K. quadrata quadrata, K. valga valga, Notholca squmula squmula, Colurella adriatica adriatica, Lepadella patella patella, Lecane hua luna, L. (Monostyla) bulla bulla, Cephalodella gibba gibba, philodina roseola) appeared rotifers only. >From the lake Sochonji, a total of 7 species were identified. It consists of 3 species (Keratella valga valga, Cephalodella gibba gibba, Asplanchna (Asplanchnella) brightwelli) of rotifers, 2 species (Daphnia hyalina, Alona quadrangularis) of cladocerans, and 2 species (Acanthodiaptomus pacificus, Bryocamptus zschokkei caucassicus) of copepods, respectively. Also, appeared nauplius of copepoda.

  • PDF

Effect of Juvenile Fish Predation on the Zooplankton Community in the Large Regulated Nakdong River, South Korea (저수지화 성향을 띤 낙동강에서 치어 섭식이 동물플랑크톤 군집에 미치는 영향)

  • Chang, Kwang-Hyeon;Hwang, Soon-Jin;Jang, Min-Ho;Kim, Hyun-Woo;Jeong, Kwang-Seuk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.310-318
    • /
    • 2001
  • In the large regulated Nakdong River, the Predation effect of juvenile fish on the zooplankton community was evaluated by gut and stomach analyses of fish in 1999. Juvenile fish of five species showed high density from May to early June when river discharge was low and water body became stagnant. During this period, large rotifers, Asplanchna spp. and Brachionus spp. declined and the decrease of cladoceran (Moina micrura and Bosminopsis deitersi) density was also obeserved. At this time, small rotifers including Polyarthra spp. reached maximum density. Gut analysis of fish demonstrated that small-sized juvenile fish (< 15 mm in total length)preferred large rotifers as well as cladocerans, while large sized fish (> 15 mm)selected only cladocerans. On the other hand, juvenile Micropterus salmoides of which size was larger than other juvenile fish consumed not only zooplankton but also other small juvenile fish. Based on these results, the decline of large rotifers and cladocerans during early summer in the river seems to be result of predation by juvenile fish. However, the period when juvenile fish maintained their high density was as short as one month and the decreased density of cladocera rapidly recovered as soon as juvenile fish became scarce. Such a short period of juvenile fish devel-opment in the river can be attributed to the consumption of juvenile fish by the young-of-the-year cohorts as well as adults of M. salmoides. The high trophic state of the river might permit the rapid recovery of the cladoceran community. The predation impact of juvenile fish in the Nakdong River seems to be affected by the existence of piscivore as well as high trophic status.

  • PDF

Limno-Biological Investigation of Lake Ok-Jeong (옥정호의 육수생물학적 연구)

  • SONG Hyung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.1-25
    • /
    • 1982
  • Limnological study on the physico-chemical properties and biological characteristics of the Lake Ok-Jeong was made from May 1980 to August 1981. For the planktonic organisms in the lake, species composition, seasonal change and diurnal vertical distribution based on the monthly plankton samples were investigated in conjunction with the physico-chemical properties of the body of water in the lake. Analysis of temperature revealed that there were three distinctive periods in terms of vertical mixing of the water column. During the winter season (November-March) the vertical column was completely mixed, and no temperature gradient was observed. In February temperature of the whole column from the surface to the bottom was $3.5^{\circ}C$, which was the minimum value. With seasonal warming in spring, surface water forms thermoclines at the depth of 0-10 m from April to June. In summer (July-October) the surface mixing layer was deepened to form a strong thermocline at the depth of 15-25 m. At this time surface water reached up to $28.2^{\circ}C$ in August, accompanied by a significant increase in the temperature of bottom layer. Maximum bottom temperature was $r5^{\circ}C$ which occurred in September, thus showing that this lake keeps a significant turbulence Aehgh the hypolimnial layer. As autumn cooling proceeded summer stratification was destroyed from the end of October resulting in vertical mixing. In surface layer seasonal changes of pH were within the range from 6.8 in January to 9.0 in guutuost. Thighest value observed in August was mainly due to the photosynthetic activity of the phytoplankton. In the surface layer DO was always saturated throughout the year. Particularly in winter (January-April) the surface water was oversaturated (Max. 15.2 ppm in March). Vertical variation of DO was not remarkable, and bottom water was fairly well oxygenated. Transparency was closely related to the phytoplankton bloom. The highest value (4.6 m) was recorded in February when the primary production was low. During summer transparency decreased hand the lowest value (0.9 m) was recorded in August. It is mainly due to the dense blooming of gnabaena spiroides var. crassa in the surface layer. A. The amount of inorganic matters (Ca, Mg, Fe) reveals that Lake Ok-Jeong is classified as a soft-water lake. The amount of Cl, $NO_3-N$ and COD in 1981 was slightly higher than those in 1980. Heavy metals (Zn, Cu, Pb, Cd and Hg) were not detectable throughout the study period. During the study period 107 species of planktonic organisms representing 72 genera were identified. They include 12 species of Cyanophyta, 19 species of Bacillariophyta, 23 species of Chlorophyta, 14 species of Protozoa, 29 species of Rotifera, 4 species of Cladocera and 6 species of Copepoda. Bimodal blooming of phytoplankton was observed. A large blooming ($1,504\times10^3\;cells/l$ in October) was observed from July to October; a small blooming was present ($236\times10^3\;cells/l$ in February) from January to April. The dominant phytoplankton species include Melosira granulata, Anabaena spiroides, Asterionella gracillima and Microcystis aeruginota, which were classified into three seasonal groups : summer group, winter group and the whole year group. The sumner group includes Melosira granulate and Anabaena spiroides ; the winter group includes Asterionella gracillima and Synedra acus, S. ulna: the whole year group includes Microtystis aeruginosa and Ankistrodesmus falcatus. It is noted that M. granulate tends to aggregate in the bottom layer from January to August. The dominant zooplankters were Thermocpclops taihokuensis, Difflugia corona, Bosmina longirostris, Bosminopsis deitersi, Keratelle quadrata and Asplanchna priodonta. A single peak of zooplankton growth was observed and maximum zooplankton occurrence was present in July. Diurnal vertical migration was revealed by Microcystis aeruginosa, M. incerta, Anabaena spiroides, Melosira granulata, and Bosmina longirostris. Of these, M. granulata descends to the bottom and forms aggregation after sunset. B. longirostris shows fairly typical nocturnal migration. They ascends to the surface after sunset and disperse in the whole water column during night. Foully one species of fish representing 31 genera were collected. Of these 13 species including Pseudoperilnmpus uyekii and Coreoleuciscus splendidus were indigenous species of Korean inland waters. The indicator species of water quality determination include Microcystis aeruginosa, Melosira granulata, Asterionelta gracillima, Brachionus calyciflorus, Filinia longiseta, Conochiloides natans, Asplanchna priodonta, Difflugia corona, Eudorina elegans, Ceratium hirundinella, Bosmina longirostris, Bosminopsis deitersi, Heliodiaptomus kikuchii and Thermocyclops taihokuensis. These species have been known the indicator groups which are commonly found in the eutrophic lakes. Based on these planktonic indicators Lake Ok-Jeong can be classified into an eutrophic lake.

  • PDF

The Study of Water Environment Variations in Lake Hwajinpo (화진포호의 수환경변화에 관한 연구)

  • Heo, Woo-Myung;Choi, Sang-Gyu;Kwak, Sung-Jin;Bhattrai, Bal Dev;Lee, Eun-Joo
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.9-21
    • /
    • 2011
  • This study is conducted to know the change in water environment of Lake Hwajinpo from 2000 to 2008 with physico-chemical parameters; salinity, dissolved oxygen, total phosphorus and total nitrogen and others. And zooplanktons and phytoplanktons were studied from 2007 to 2008. From the water quality data of Lake Hwajinpo from 2000 to 200S; water temperature, salinity, transparency, chemical oxygen demand and dissolved oxygen ranges are $2.8{\sim}29.4^{\circ}C$, 0.23~33.2‰, $0.2{\sim}1.8\;m$, $0.2{\sim}20.2\;mg\;L^{-1}$ and $0.1{\sim}17.4\;mg\;L^{-1}$ and the average values are $18.0^{\circ}C$, 15.7‰, 0.7 m, $5.7\;mg\;L^{-1}$ and $8.0\;mg\;L^{-1}$, respectively. Total phosphorus (TP) and total nitrogen (TN) ranges are $0.024{\sim}0.869\;mg\;L^{-1}$ (average 0.091) and $0.240{\sim}5.310\;mg\;L^{-1}$ (average 1.235). Average TN/TP ratio is 16.4. The annual variations in COD, TP, TN and Chl.${\alpha}$ are compared. COD in 2000 is $4.83\;mg\;L^{-1}$ and 2008 is $1.80\;mg\;L^{-1}$ which is reduced by $0.34\;mg\;L^{-1}$ every year. TP in 2000 is $0.07\;mg\;L^{-1}$ and 2008 is $0.05\;mg\;L^{-1}$ reduced gradually. Yearly reduction in TN is $0.09\;mg\;L^{-1}$, in 2000 and 2008 the values are $1.54\;mg\;L^{-1}$ and $0.77\;mg\;L^{-1}$ respectivly. Chl.${\alpha}$ in 2000 is $46.30\;{\mu}g\;L^{-1}$ and $5.78\;{\mu}g\;L^{-1}$ in 2008; yearly reduction is $4.50\;{\mu}g\;L^{-1}$. The tropic state index (TSI) in south and north parts of Lake Hwajinpo in 2000 are 67 and 63 which are reduced to 63 and 59 in 2008 respectively. North and south part of Lake Hwajinpo have 67 species of phytoplankton under 47 families in 2007 and 2008. Dominant species in south part in 2007 are; Asterococcus superbus in May, Lyngbya sp. in September and Trachelomonas spp. in November and in 2008 Anabaena spiroides in August are abundant and varies with time. Zooplankton species in Lake Hwajinpo are 25 of 25 families. Dominant species in south part in May and August 2007 and May and November in 2008 Copepoda larvae and in September 2007 Protozoa spp. of Protozoan and Brachionus plicatilis and Brachionus urceolaris of Cladocera in August 2008. Dominant species in north part Asplanchna sp. of Cladecera in August and November 2007 and rest of the time are larvae of Copepoda. In this way, the water quality of Lake Hwajinpo is changing with slow rate in the long period specially nutrients concentration (TP, TN etc) is decreasing.