• 제목/요약/키워드: Aspherical shape

검색결과 31건 처리시간 0.032초

역공학을 이용한 비구면 렌즈의 설계 데이터 도출 (Reverse Engineering of Apherical Lens Curvature)

  • 김한섭;김명중;박규열;전종업;김의중
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.806-809
    • /
    • 2003
  • In this paper, extracting design information from arbitrary aspherical lens shape in reverse engineering is introduced. Deformation terms and sphere data equation with various variables compose asphere equation. Aspherical lens shape is expressed with complicated polynomial expression that includes deformation terms and sphere data. Deformation term and vertex curvature have direct influence on a geometric shape and an optical characteristics of aspherical lens. Hence, extracting these information mean that design information could be derived and analyzed from shape data of arbitrary aspherical lens. Furthermore, sharing designer's experience and knowledge for aspherical lens design could be expected.

  • PDF

구연수차 보정을 이용한 비구면 렌즈의 형상설계 (Design of Aspherical Lens Shape by Modification of Spherical Aberration)

  • 김한섭;박규열;전종업
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.52-55
    • /
    • 2002
  • In this research, the modification method of spherical aberration, and aspherical lens shape design method were investigated. Spherical aberration affects lens's performance directly. Many studies have attempted to remove spherical aberration with a lot of methods in order to reduce the bad effect of spherical aberration. The approach to lens shape design was base on the ray tracing method. From the result, it was confirmed that ray reverse-tracing method was convenient to remove spherical aberration, and could be used very effectively and usefully for aberration-free aspherical lens design.

  • PDF

고속 가공기를 활용한 비구면 안경렌즈 유리금형용 세라믹코어 가공기술 (Ceramic Core Processing Technology for the Glass Mold of Aspherical Lenses using High-speed Cutting Machine)

  • 류근만;김효식;김홍택;양순철;장기수;김동익;원종호;김건희
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.7-12
    • /
    • 2012
  • Ceramic core processing technology using 5-axis high-speed cutting machine is applied to make the glass molds for aspherical ophthalmic lenses. In the technology, optimum processing conditions for aspherical ceramic molds are based on minimal experimental data of surface roughness. Such surface roughness is influenced by fabricating tools, cutting speed, feed rate, and depth of cut, respectively. In this paper, we present that surface roughness and shape accuracy of aspheric ceramic mold obtained by optimum processing conditions are Pa $0.6184{\mu}m$ and Pt $5.0301{\mu}m$, respectively, and propose that these values are sufficiently possible to apply to making the glass molds for aspherical ophthalmic lenses.

EVOLUTION OF AN ASPHERICAL VOID

  • Lee, Hae-Shim;Koh, Yoon-Suk
    • 천문학회지
    • /
    • 제23권2호
    • /
    • pp.112-115
    • /
    • 1990
  • We test an evolution of a giant void using an N-body simulation. We find the void expansion is faster than the rest part of the universe and the shape of an isolated aspherical void becomes more spherical as it evolves.

  • PDF

공명초음파분광법을 활용한 광학기기용 렌즈의 결함평가 (Defect Evaluation of Optical Lens by Resonant Ultrasound Spectroscopy)

  • 김성훈;백경윤;김영남;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1491-1495
    • /
    • 2004
  • In this paper, resonant ultrasound spectroscopy(RUS) was used to determine the natural frequency of a spherical and a aspherical lens. The objective of the paper is to evaluate defect and shape error by using nondestructive evaluation method with Resonant Ultrasound Spectroscopy(RUS). The principle of RUS is that the mechanical resonant frequency of the materials depends on density, and the coefficient of elasticity. We evaluated existence of flaws through comparison with resonant frequency of a spherical and a aspherical lens. The spherical glass lenses were made of BK-7 glass, one's diameter in 2mm and 5mm. The polished spherical glass lenses had no deflection or a deflection below 2.0${\mu}{\textrm}{m}$. Also, The aspherical lens were made of same material and ones diameter in 7mm and thickness in 3.4mm. In the experiment, we were performed to investigate relationship between frequency measuring parameter($\beta$) and mass of each specimens. The difference between resonant frequency and mode of aspherical glass lens which has no defect was distinguished from aspherical glass lens which has some defects.

  • PDF

MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석 (Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing)

  • 이정원;조명우;하석재;홍광표;조용규;이인철;김병민
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.

광선 역추적 방식을 이용한 비구면 렌즈의 설계 (Aspherical Lens Design by using Ray Reverse Tracing Method)

  • 김한섭;박규열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.992-997
    • /
    • 2003
  • Aspherical lens design method named ray reverse tracing method is introduced. Differently from the traditional design method, the ray reverse tracing method traces the shape and location of a real object by use of its virtual image. From the result, it was convinced that spherical aberration free aspherical lens could be designed by use of the ray reverse tracing method. Furthermore, it could reduce the degree of dependence of optical characteristics on designer's ability, because deformation terms and optimization can be eliminated, which has been performed in conventional lens design process.

  • PDF

Control Method for the Tool Path in Aspherical Surface Grinding and Polishing

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.51-56
    • /
    • 2006
  • This paper proposes a control algorithm, which is verified experimentally, for aspherical surface grinding and polishing. The algorithm provides simultaneous control of the position and interpolation of an aspheric curve. The nonlinear formula for the tool position was derived from the aspheric equation and the shape of the tool. The function was partitioned at specific intervals and the control parameters were calculated at each control section. The position, acceleration, and velocity at each interval were updated during the process. A position error feedback was introduced using a rotary encoder. The feedback algorithm corrected the position error by increasing or decreasing the feed speed. In the experimental verification, a two-axis machine was controlled to track an aspherical surface using the proposed algorithm. The effects of the control and process parameters were monitored. The results demonstrated that the maximum tracking error with tuned parameters was at the submicron level for concave and convex surfaces.

광선 역추적 방식을 이용한 구면수차 제거 비구면 렌즈의 설계 (Design of Spherical Aberration Free Aspherical Lens by Use of Ray Reverse Tracing Method)

  • 김한섭;박규열;이원규;전종업
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.191-198
    • /
    • 2003
  • In this study, aberration free aspherical lens design method named ray reverse tracing method is introduced. Differently from the traditional design method, the ray reverse tracing method traces the shape and location of a real object by use of its virtual image. From the result, especially spherical aberration free aspherical lens could be designed by use of the ray reverse tracing method. Furthermore, it could reduce the degree of dependence of optical characteristics on designer's ability, because deformation terms and optimization can be eliminated, which has been performed in conventional lens design process.