• 제목/요약/키워드: Aspheric mirror

검색결과 52건 처리시간 0.025초

적외선 카메라용 반사경의 초정밀 절삭특성에 관한 연구 (A Study on the Characteristics on Ultra Precision Machining of IR Camera Mirror)

  • 양순철;김건희;김효식;신현수;원종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.444-447
    • /
    • 2005
  • This paper is described about the technique of ultra-precision machining for a infrared camera aspheric mirror. A 200 mm diameter aspheric mirror was fabricated by SPDTM. Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 5 nm Ra, and the form error of $\lambda/2\;(\lambda=632.8 nm)$ for reference curved surface 200 mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using A16061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector.

  • PDF

Al6061-T651의 초정밀 절삭특성에 관한 연구 (A Study on the Characteristics on Ultra Precision Machining of Al6061-T651)

  • 김건희;양순철;박요창
    • 한국기계가공학회지
    • /
    • 제4권1호
    • /
    • pp.43-48
    • /
    • 2005
  • This paper is described about the technique of ultra-precision machining for an aerospace aspheric mirror. The reflection mirror system generates parallel beams inside a thermal vacuum chamber. A 200mm diameter aspheric mirror was fabricated by SPDTM. Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 10nm Ra, and the form error of ${\lambda}/2$ (${\lambda}$=632.8nm) for reference curved surface 200mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using Al6061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector.

  • PDF

적외선 카메라용 반사경의 초정밀 절삭특성에 관한 연구 (A Study on the Characteristics on Ultra Precision Machining of IR Camera Mirror)

  • 김건희;김효식;신현수;원종호;양순철
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.44-50
    • /
    • 2006
  • This paper describs about the technique of ultra-precision machining for an infrared(IR) camera aspheric mirror. A 200 mm diameter aspheric mirror was fabricated by SPDTM(Single Point Diamond Turning Machine). Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 5 nm Ra, and the form error of ${\lambda}/2\;({\lambda}=632.8\;nm)$ for reference curved surface 200 mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using Al6061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector. The cutting force and the surface roughness are measured according to each cutting conditions feed rate, depth of cut and cutting speed, using diamond turning machine to perform cutting processing. As a result, the surface roughness is good when feed rate is 1mm/min, depth of cut $4{\mu}m$ and cutting speed is 220 m/min. We could machined the primary mirror for IR camera in diamond machine with a surface roughness within $0.483{\mu}m$ Rt on aspheric.

대구경 비구면 광학기술과 응용 (Large Aspheric Optics and Its Applications)

  • 이윤우;문일권;김학용;양호순
    • 한국광학회지
    • /
    • 제24권3호
    • /
    • pp.111-119
    • /
    • 2013
  • 대구경 비구면 거울은 대형 천체 망원경이나 고해상도 위성 카메라 등에 사용하는 핵심부품이다. 일반적인 디지털 카메라와 비교하면 매우 크므로 설계 및 제작이 같은 크기의 구면거울보다 훨씬 어렵다. 특히 경량화가 많이 될수록 중력이나 온도변화와 같은 외부의 힘에 의한 변형이 쉽게 발생하기 때문에 이러한 효과를 줄여주는 광기계 설계 및 해석이 더욱 중요해진다. 지상용과 우주용은 사용 환경에 차이가 있어서 설계 요구조건이 달라지고 이에 따라 지지구조물이나 반사경의 경량화 모양 등에 많은 차이가 있다. 본 논문에서는 대구경 비구면 광학기술가운데 가장 어려운 광기계 설계에 관하여 지상용과 우주용으로 나누어 자세히 설명하고자 한다.

SPDT를 이용한 대구경 Collimation Reflector 가공 연구 (A study on the manufacture of Large Collimation Reflector using SPDT)

  • 김건희;홍권희;김효식;박지영;박순섭;원종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.897-900
    • /
    • 2002
  • The collimation mirror will be used for thermal vacuum testing of spacecraft. The reflection mirror system to generate parallel beam inside the thermal vacuum chamber. A 600mm diameter aspheric Collimation mirror was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machining, but not polishable due to its ductility. Aspheric large collimation reflector without a conventional polishing process, the surface roughness of 10nmRa, and the from error of $\lambda/2 ~\lambda/4(\lambda$ =632.8 nm) for reference curved surface 600 mm has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of A16061-T651 and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

다이아몬드 터닝머신을 이용한 알루미늄반사경의 절삭특성 (A Study of Aluminum Reflector Manufacturing in Diamond Turning Machine)

  • 김건희;고준빈;김홍배;원종호
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.1-5
    • /
    • 2002
  • A 110 m diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fsbricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an A1 substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632.8nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated A1 alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

초정밀가공기를 이용한 알루미늄반사경의 절삭특성 (A Study of Aluminum reflector manufacturing in diamond turning machine)

  • 김건희;도철진;홍권희;유병주;원종호;김상석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1125-1128
    • /
    • 2001
  • A 110mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning(SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

다이아몬드 터닝머신을 이용한 금속 비구면 초정밀 절삭특성 (A study of metal aspheric reflector manufacturing in diamond turning machine)

  • 김건희;도철진;홍권희;유병주;원종호;김상석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.83-87
    • /
    • 2001
  • A 110 mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of $Ra={\lambda}/12({\lambda}=632nm)$ has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

New Bending System Using a Segmented Vacuum Chuck for Stressed Mirror Polishing of Thin Mirrors

  • Kang, Pilseong;Yang, Ho-Soon
    • Current Optics and Photonics
    • /
    • 제1권6호
    • /
    • pp.618-625
    • /
    • 2017
  • In the present research, a new bending system using a segmented vacuum chuck for Stressed Mirror Polishing (SMP) is developed. SMP is a special fabrication method for thin aspheric mirrors, where simple flat or spherical fabrication is applied while a mirror blank is deflected. Since a mirror blank is usually glued to a bending fixture in the conventional SMP process, there are drawbacks such as long curing time, inconvenience of mirror replacement, risk of mirror breakage, and stress concentration near the glued area. To resolve the drawbacks, a new bending system is designed to effectively hold a mirror blank by vacuum. For the developed bending system, the optimal bending load to achieve the designated mirror deflection is found by finite element analysis and an optimization algorithm. With the measurement results of the deflected mirror surfaces with the optimal bending loads, the feasibility of the developed bending system is investigated. As a result, it is shown that the bending system is appropriate for the SMP process.

LED 보안등의 광균일도 향상을 위한 비구면 Mirror형 광학 설계에 관한 연구 (A Study of Aspheric Mirror Optical Design to Improve Luminous Intensity Uniformity of LED Security Lights)

  • 정인호;윤철용;예인수;현동훈
    • 한국생산제조학회지
    • /
    • 제20권1호
    • /
    • pp.114-119
    • /
    • 2011
  • There is a limit to technology of improving luminous intensity uniformity and glare, known as a weakness of existing LED lamp. Because of Using many LED, LED lamp not only waste energy but have bad effect on efficiency. Our goal is to develop security lights solution which is contented with suitable area in KS(Korean Industrial Standards) and to remove glare by combining asphere in optical system with different concept. To improve luminous intensity uniformity, a reflect mirror system was used after an aspheric optical system design for this study. We made a mirror and measured it after analysing luminance changes depend on aspheric shapes with simulation program to see if aspheric shapes effect luminance distribution. We made progress to find problems and improve them by comparing measured data and analysed data. This result of the study will contribute to industry of LED lighting through developing solution of emotional illumination of LED security lights by knowing the importance of reflectivity with this study and improving luminous intensity uniformity with solving the problem.