• Title/Summary/Keyword: Aspheric Surface

Search Result 137, Processing Time 0.028 seconds

Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone (휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가)

  • Baek Seung-Yub;Lee Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

Selection of optimal machining condition for productivity enhancement of aspheric surface lens (비구면 렌즈의 생산성 향상을 위한 최적가공조건선정)

  • Baek S.Y.;Lee H.D.;Kim S.C.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.561-562
    • /
    • 2006
  • To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the grinding surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

  • PDF

A study on the development of ultra-precision grinding system and manufacturing properties for aspheric surface micro lens (비구면 마이크로 렌즈 가공을 위한 초정밀 연삭 시스템 개발 및 가공 특성에 관한 연구)

  • Baek S.Y.;Lee H.D.;Kim S.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.15-18
    • /
    • 2005
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, The development of ultra-precision grinding system and manufacturing properties for the aspheric surface micro lens are described. In the work reported in this paper, and ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the surface roughness and profiles accuracy. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $3\;{\mu}m$ P-V and a surface roughness of $0.1\;{\mu}m\;R_{max}$.

  • PDF

The Development of Ultra-precision Aspheric Program for Optical (광학소자용 초정밀 비구면 가공프로그램 개발)

  • 김우순;김동현;난바의치
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.53-57
    • /
    • 2004
  • In this paper, we will present the Aspheric Surface Program for optical element. X-ray optical element designed to give a high resolution and reflectively in order to observe the living cell in the range of the water window. According to optical design, we developed the Aspheric Surface Program using the visual basic. Using the Aspheric Surface Program, we directly machined the electroless nickel bulk.

  • PDF

Study on design and measurement of aspheric (비구면의 설계와 측정)

  • Park, Dong Hwa
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.2
    • /
    • pp.133-138
    • /
    • 2005
  • As Aspheric lenses have producted to development for disadvantage of spherical lenses, the purpose of use on aspheric lenses is in improvement of the imaging quality and decrement of the number of lenses used, they are used for lessen the mass and volume in optical science. The skills to produce optical data and the aspheric are seen as high technology today. The optical science which is composed of aspheric provides broadening view of things and high efficiency. In addition, it provides many advantages such as providing image and reducing the weight. Now, I study with techniques of processing and measuring aspheric to satisfy the necessity of increasing in aspheric data. Furthermore. I emphasize that the techniques of producing, measuring, and evaluating in the aspheric lenses have constantly developing today.

  • PDF

The Development of CAM Software for Ultra-precision Aspheric Surface (초정밀 비구면 가공용 CAM 소프트웨어 개발에 대한 연구)

  • Yang, Min-Yang;Lee, Taik-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.79-86
    • /
    • 2002
  • As consumer electronics, information, and aero-space industry grow, the demand for aspheric lens increases higher. To enhance the precision and productivity of aspheric surface, a CAM system for ultra-precision aspheric surface needs to be realized. In this study, the developed CAM system can generate NC code fur various aspheric surfaces fast and precisely by a new bi-arc interpolation method that the location of maximum error is fixed at an efficient point. The newly developed bi-arc meets the given tolerance more precisely, performs faster calculation. The cutting condition input module and the NC code verification module are adequate to ultra-precision machining, so that a operator can obtain products fast and easily.

The Development of CAM Software for Ultra-precision Aspheric Surface (초정밀 비구면 선삭가공용 CAM 소프트웨어 개발에 대한 연구)

  • 양민양;이택민;이성찬;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.534-537
    • /
    • 1996
  • As consumer electronics, information, and aero-space industry grow, the demand for aspheric lens increases higher. To enhance the precision and productivity of aspheric surface, a CAM system for ultra-precision aspheric surface needs to be realized. In this study, the developed CAM system can generate NC code for various aspheric surfaces fast and precisely by Tri-arc interpolation method that the location of maximum error is fixed. The cutting condition input module and the NC code verification module are adequate to ultra-precision machining, so that a operator can obtain products fast and easily.

  • PDF

A Study on the Characteristics on Ultra Precision Machining of IR Camera Mirror (적외선 카메라용 반사경의 초정밀 절삭특성에 관한 연구)

  • Kim Gun-Hee;Kim Hyo-Sik;Shin Hyun-Soo;Won Jong-Ho;Yang Sun-Choel
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.44-50
    • /
    • 2006
  • This paper describs about the technique of ultra-precision machining for an infrared(IR) camera aspheric mirror. A 200 mm diameter aspheric mirror was fabricated by SPDTM(Single Point Diamond Turning Machine). Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 5 nm Ra, and the form error of ${\lambda}/2\;({\lambda}=632.8\;nm)$ for reference curved surface 200 mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using Al6061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector. The cutting force and the surface roughness are measured according to each cutting conditions feed rate, depth of cut and cutting speed, using diamond turning machine to perform cutting processing. As a result, the surface roughness is good when feed rate is 1mm/min, depth of cut $4{\mu}m$ and cutting speed is 220 m/min. We could machined the primary mirror for IR camera in diamond machine with a surface roughness within $0.483{\mu}m$ Rt on aspheric.

Development of Aspheric Surface Profilometry using 2nd Derivative (형상의 이차미분을 이용한 비구면 형상측정기술 개발)

  • Kim, Byoung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • I present a method of aspheric surface profile measurement using 2nd derivative of local area profile. This method is based on the principle of curvature sensor which measures the local 2nd derivative under test along a line. The profile is then reconstructed from the data on the each point. Unlike subaperture-stiching method and slope detection method, 2nd derivative method has strong points from a geometric point of view in measuring the aspheric surface profile. The second derivative terms of surface profile is an intrinsic property of the test piece, which is independent of its position and tip-tilt motion. The curvature is measured at every local area with high accuracy and high lateral resolution by using White-light scanning interferometry.

Reverse Engineering of an Aspheric Lens Curvature (역공학을 이용한 비구면 렌즈의 형상 설계 정보 추출)

  • Kim, Han-Seob;Jeon, Jeong-Up;Park, Kyu-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.144-149
    • /
    • 2005
  • This study presents the method of extracting shape design data on any aspheric lens by reverse engineering. The design formula fur aspheric lenses is needed in almost all of the design, manufacture and measuring processes. The difficulty in designing the lens lies in the fact that it uses a complex formula for the aspheric surface, and many of the preliminary design values must be selected before actually inserting them into the formula. If the values could be extracted from an aspheric lens for which the structural design information is unknown and used in designing other lenses of similar characteristics, the difficulties in designing and measuring aspheric lens could be reduced. Therefore, in this study, the concept of reverse engineering was applied to demonstrate the method of extracting shape design information of aspheric lens from an arbitrary aspheric lens.