• Title/Summary/Keyword: Aspect-Mining

Search Result 69, Processing Time 0.027 seconds

Aspect Mining Process Design Using Abstract Syntax Tree (추상구문트리를 이용한 어스팩트 마이닝 프로세스 설계)

  • Lee, Seung-Hyung;Song, Young-Jae
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.75-83
    • /
    • 2011
  • Aspect-oriented programming is the paradigm which extracts crosscutting concern from a system and solves scattering of a function and confusion of a code through software modularization. Existing aspect developing method has a difficult to extract a target area, so it is not easy to apply aspect mining. In an aspect minning, it is necessary a technique that convert existing program refactoring elements to crosscutting area. In the paper, it is suggested an aspect mining technique for extracting crosscutting concern in a system. Using abstract syntax structure specification, extract functional duplicated relation elements. Through Apriori algorithm, it is possible to create a duplicated syntax tree and automatic creation and optimization of a duplicated source module, target of crosscutting area. As a result of applying module of Berkeley Yacc(berbose.c) to mining process, it is confirmed that the length and volume of program has been decreased of 9.47% compared with original module, and it has been decreased of 4.92% in length and 5.11% in volume compared with CCFinder.

Multilayer Knowledge Representation of Customer's Opinion in Reviews (리뷰에서의 고객의견의 다층적 지식표현)

  • Vo, Anh-Dung;Nguyen, Quang-Phuoc;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.652-657
    • /
    • 2018
  • With the rapid development of e-commerce, many customers can now express their opinion on various kinds of product at discussion groups, merchant sites, social networks, etc. Discerning a consensus opinion about a product sold online is difficult due to more and more reviews become available on the internet. Opinion Mining, also known as Sentiment analysis, is the task of automatically detecting and understanding the sentimental expressions about a product from customer textual reviews. Recently, researchers have proposed various approaches for evaluation in sentiment mining by applying several techniques for document, sentence and aspect level. Aspect-based sentiment analysis is getting widely interesting of researchers; however, more complex algorithms are needed to address this issue precisely with larger corpora. This paper introduces an approach of knowledge representation for the task of analyzing product aspect rating. We focus on how to form the nature of sentiment representation from textual opinion by utilizing the representation learning methods which include word embedding and compositional vector models. Our experiment is performed on a dataset of reviews from electronic domain and the obtained result show that the proposed system achieved outstanding methods in previous studies.

  • PDF

Multi-Label Classification Approach to Effective Aspect-Mining (효과적인 애스팩트 마이닝을 위한 다중 레이블 분류접근법)

  • Jong Yoon Won;Kun Chang Lee
    • Information Systems Review
    • /
    • v.22 no.3
    • /
    • pp.81-97
    • /
    • 2020
  • Recent trends in sentiment analysis have been focused on applying single label classification approaches. However, when considering the fact that a review comment by one person is usually composed of several topics or aspects, it would be better to classify sentiments for those aspects respectively. This paper has two purposes. First, based on the fact that there are various aspects in one sentence, aspect mining is performed to classify the emotions by each aspect. Second, we apply the multiple label classification method to analyze two or more dependent variables (output values) at once. To prove our proposed approach's validity, online review comments about musical performances were garnered from domestic online platform, and the multi-label classification approach was applied to the dataset. Results were promising, and potentials of our proposed approach were discussed.

A Text Mining Analysis for Research Trend about the Mathematics Education (텍스트 마이닝 분석을 통한 수학교육 연구 동향 분석)

  • Jin, Mireu;Ko, Ho Kyoung
    • East Asian mathematical journal
    • /
    • v.35 no.4
    • /
    • pp.489-508
    • /
    • 2019
  • In this paper we used text mining method to analyze journals of mathematics education posterior to the year of 2016. To figure out trends of mathematics education research. we analyzed the key words largely mentioned in the recent mathematics education journals by Term Frequency and Term Frequency-Inverse Document Frequency method. We also looked at how these keywords match up with the key words that appear of education to prepare for future society. This result can infer the characteristics of mathematics education research in the aspect upcoming research topics.

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.259-266
    • /
    • 2023
  • In this paper, we propose an algorithm that can improve the accuracy performance of collaborative filtering using attribute-based opinion mining (ABOM). For the experiment, a total of 1,227 online consumer review data about smartphone apps from domestic smartphone users were used for analysis. After morpheme analysis using the KKMA (Kkokkoma) analyzer and emotional word analysis using KOSAC, attribute extraction is performed using LDA topic modeling, and the topic modeling results for each weighted review are used to add up the ratings of collaborative filtering and the sentiment score. MAE, MAPE, and RMSE, which are statistical model performance evaluations that calculate the average accuracy error, were used. Through experiments, we predicted the accuracy of online customers' app ratings (APP_Score) by combining traditional collaborative filtering among the recommendation algorithms and the attribute-based opinion mining (ABOM) technique, which combines LDA attribute extraction and sentiment analysis. As a result of the analysis, it was found that the prediction accuracy of ratings using attribute-based opinion mining CF was better than that of ratings implementing traditional collaborative filtering.

Development of Image Processing Software for Satellite Data

  • Chi, Kwang-Hoon;Suh, Jae-Young;Han, Jong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.361-369
    • /
    • 1998
  • Recently, the improvement of on-board satellite sensors covering hyperspectral image sensors, high spatial resolution sensors provide data on earth in diverse aspect. The application field relating remotely sensed data also varies depending on what type of job one wants. The various resolution of sensors from low to extremely high is also available on the market with a user defined specific location. The expense to purchase remote sensed data is going down compare to the cost it need past few years ago in terms of research or private use. Now, the satellite remote sensed data is used on the field of forecasting, forestry, agriculture, urban reconstruction, geology, or other research field in order to extract meaningful information by applying special techniques of image processing. There are many image processing packages available worldwide and one common aspect is that they are expensive. There need to be a advanced satellite data processing package for people who can not afford commercial packages to apply special remote sensing techniques on their data and produce valued-added product. The study was carried out with the purpose of developing a special satellite data processing package which covers almost every satellite produced data with normal image processing functions and also special functions needed on specific research field with friendly graphical user interface (GUI). And for the people with any background of remote sensing with windows platform.

  • PDF

An Analysis of Key Elements for FinTech Companies Based on Text Mining: From the User's Review (텍스트 마이닝 기반의 자산관리 핀테크 기업 핵심 요소 분석: 사용자 리뷰를 바탕으로)

  • Son, Aelin;Shin, Wangsoo;Lee, Zoonky
    • The Journal of Information Systems
    • /
    • v.29 no.4
    • /
    • pp.137-151
    • /
    • 2020
  • Purpose Domestic asset management fintech companies are expected to grow by leaps and bounds along with the implementation of the "Data bills." Contrary to the market fever, however, academic research is insufficient. Therefore, we want to analyze user reviews of asset management fintech companies that are expected to grow significantly in the future to derive strengths and complementary points of services that have been provided, and analyze key elements of asset management fintech companies. Design/methodology/approach To analyze large amounts of review text data, this study applied text mining techniques. Bank Salad and Toss, domestic asset management application services, were selected for the study. To get the data, app reviews were crawled in the online app store and preprocessed using natural language processing techniques. Topic Modeling and Aspect-Sentiment Analysis were used as analysis methods. Findings According to the analysis results, this study was able to derive the elements that asset management fintech companies should have. As a result of Topic Modeling, 7 topics were derived from Bank Salad and Toss respectively. As a result, topics related to function and usage and topics on stability and marketing were extracted. Sentiment Analysis showed that users responded positively to function-related topics, but negatively to usage-related topics and stability topics. Through this, we were able to extract the key elements needed for asset management fintech companies.

A Post-analysis of the Association Rule Mining Applied to Internee Shopping Mall

  • Kim, Jae-Kyeong;Song, Hee-Seok
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.253-260
    • /
    • 2001
  • Understanding and adapting to changes of customer behavior is an important aspect for a company to survive in continuously changing environment. The aim of this paper is to develop a methodology which detects changes of customer behavior automatically from customer profiles and sales data at different time snapshots. For this purpose, we first define three types of changes as emerging pattern, unexpected change and the added / perished rule. Then we develop similarity and difference measures for rule matching to detect all types of change. Finally, the degree of change is evaluated to detect significantly changed rules. Our proposed methodology can evaluate degree of changes as well as detect all kinds of change automatically from different time snapshot data. A case study for evaluation and practical business implications for this methodology are also provided.

  • PDF

Text-Mining of Online Discourse to Characterize the Nature of Pain in Low Back Pain

  • Ryu, Young Uk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.3
    • /
    • pp.55-62
    • /
    • 2019
  • PURPOSE: Text-mining has been shown to be useful for understanding the clinical characteristics and patients' concerns regarding a specific disease. Low back pain (LBP) is the most common disease in modern society and has a wide variety of causes and symptoms. On the other hand, it is difficult to understand the clinical characteristics and the needs as well as demands of patients with LBP because of the various clinical characteristics. This study examined online texts on LBP to determine of text-mining can help better understand general characteristics of LBP and its specific elements. METHODS: Online data from www.spine-health.com were used for text-mining. Keyword frequency analysis was performed first on the complete text of postings (full-text analysis). Only the sentences containing the highest frequency word, pain, were selected. Next, texts including the sentences were used to re-analyze the keyword frequency (pain-text analysis). RESULTS: Keyword frequency analysis showed that pain is of utmost concern. Full-text analysis was dominated by structural, pathological, and therapeutic words, whereas pain-text analysis was related mainly to the location and quality of the pain. CONCLUSION: The present study indicated that text-mining for a specific element (keyword) of a particular disease could enhance the understanding of the specific aspect of the disease. This suggests that a consideration of the text source is required when interpreting the results. Clinically, the present results suggest that clinicians pay more attention to the pain a patient is experiencing, and provide information based on medical knowledge.

Shape factors of cylindrical permeameters

  • Silvestri, Vincenzo;Samra, Ghassan Abou;Bravo-Jonard, Christian
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.17-28
    • /
    • 2011
  • This paper presents an analytical solution for steady state flow into a close-ended cylindrical permeameter. The soil medium is considered to be uniform, isotropic, and of infinite thickness. Laplace equation is solved by considering rotational symmetry and by using curvilinear coordinates obtained from conformal mapping. The deduced shape factors, which are compared to approximate relationships obtained from both numerical and physical modelling, and idealizations involving ellipsoidal cavities, are proposed for use in field measurements. It is shown that some of the shape factors obtained are significantly different from published values and show a much higher dependence of the rate of flow on the aspect ratio, than deduced from approximate solutions.