• 제목/요약/키워드: Aspect ratio(AR)

검색결과 94건 처리시간 0.026초

단섬유 종횡비 및 직경비가 강화고무의 인장특성에 미치는 영향 (Effects of Short-fiber Aspect Ratio and Diameter Ratio on Tensile Properties of Reinforced Rubber)

  • 류상렬;이동주
    • Composites Research
    • /
    • 제16권2호
    • /
    • pp.18-25
    • /
    • 2003
  • 나일론6 단섬유를 보강한 NR과 SBR의 인장특성에 대해 섬유 종횡비(AR), 직경비(DR), 계면상 조건, 그리고 섬유 함유률을 함수로 연구하였다. 인장강도는 우수한 계면조건에서 AR(20min.)이 증가할수록 증가하였다 단섬유(DR=3, AR=20min.) 강화 SBR은 모든 계면조건에서 희석효과를 보이지 않았다. 동일한 단섬유를 보강한 NR의 경우도 No Coating을 제외하고는 희석효과를 보이지 않았다. 인장탄성률은 동일한 직경비에서 AR이 증가할수록, 섬유 함유률이 높을수록. 계면조건이 우수할수록 크게 증가하였다. 동일한 직경비에서 계면조건이 우수할수록 이탈 힘은 크게 나타났다. 또한 단섬유 강화 메커니즘을 확인하기 위해 축대칭 모델을 이용 응력해석을 실시하였다. 본 연구를 통해 AR, 계면상 조건. 그리고 DR이 강화고무의 인장특성에 중요한 역할을 항을 확인하였다.

디퓨저 타입 계간 축열조 내부 열성층화에 대한 입구 유속 및 탱크 종횡비 영향 연구 (Effects of the aspect ratio and inlet velocity on the thermal stratification in a diffuser type seasonal thermal storage tank)

  • 김성근;정성용
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.99-105
    • /
    • 2021
  • In this study, the thermal stratification in solar seasonal thermal storage tanks was numerically simulated. The effects of the aspect ratio (AR) and inlet velocity on the thermal stratification in the diffuser type heat storage tank were investigated. The temperature distributions inside the tank were similar with velocity fields. Jet flows from opposite diffusers encountered each other at the tank center region. Thereafter, the downward flows occurred, and this flows strongly affected the thermal stratification. When AR was smaller than 2, these downward flows influenced a further distance and enhanced mixing inside the tank. Thermal stratification was evaluated by thermocline thickness and degree of stratification, and AR of 3 had the highest degree of stratification. The inlet velocity effect was expressed with the ratio (Re/Ri) of Reynolds and Richardson numbers. The second-order approximation was found for the relationship between the thermocline thickness and log Re/Ri.

Strength and behaviour of reinforced SCC wall panels in one-way action

  • Ganesan, N.;Indiraa, P.V.;Prasad, S. Rajendra
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.1-18
    • /
    • 2010
  • A total of 28 wall panels were cast and tested under uniformly distributed axial load in one-way in-plane action to study the effect of slenderness ratio (SR) and aspect ratio (AR) on the ultimate load. Two concrete formulations, normal concrete (NC) and self compacting concrete (SCC), were used for the casting of wall panels. Out of 28 wall panels, 12 were made of NC and the remaining 16 panels were of SCC. All the 12 NC panels and 12 out of 16 SCC panels were used to study the influence of SR and the remaining 4 SCC panels were tested to study the effect of AR on the ultimate load. A brief review of studies available in literature on the strength and behaviour of reinforced concrete (RC) wall panels is presented. Load-deformation response was recorded and analyzed. The ultimate load of SCC wall panels decreases non-linearly with the increase in SR and decreases linearly with increasing values of AR. Based on this study a method is proposed to predict the ultimate load of reinforced SCC wall panels. The modified method includes the effect of SR, AR and concrete strength.

Parametric studies on convection during the physical vapor transport of mercurous chloride ($Hg_2Cl_2$)

  • Kim, Geug-Tae;Lee, Kyong-Hwan
    • 한국결정성장학회지
    • /
    • 제14권6호
    • /
    • pp.281-289
    • /
    • 2004
  • The temperature hump is found to be most efficient in suppressing parasitic nucleation. With the temperature humps, there are found to be observed in undersaturations along the transport path for convective-diffusive processes ranging from $D_{AB}$ = 0.0584 $\textrm{cm}^2$/s to 0.584 $\textrm{cm}^2$/s, axial positions from 0 to 7.5 cm. With decreasing Ar = 5 to 3.5, the temperature difference is increased because of the imposed nonlinear temperature profile but the rate is decreased. For 2 $\leq$ Ar $\leq$ 3.5, the rate is increased with the aspect ratio as well as the temperature difference. Such an occurrence of a critical aspect ratio is likely to be due to the effect of sidewall and much small temperature difference. The rate is decreased exponentially with the aspect ratio for 2 $\leq$ Ar $\leq$ 10. Also, the rate is exponentially decreased with partial pressure of component B, P for 1 $\leq$ P $\leq$ 100 Torr.$ B/ $\leq$ 100 Torr.

Effect of aspect ratio on solutally buoyancy-driven convection in mercurous chloride $(Hg_2Cl_2)$ crystal growth processes

  • Kim, Geug-Tae;Lee, Kyoung-Hwan
    • 한국결정성장학회지
    • /
    • 제16권4호
    • /
    • pp.149-156
    • /
    • 2006
  • For an aspect ratio (transport length-to-width) of 5, Pr = 2.89, Le = 0.018, Pe = 2.29, Cv = 1.11, $P_B$=40 Torr, solutally buoyancy-driven convection $(Gr_s=3.03{\times}10^5)$ due to the disparity in the molecular weights of the component A $(Hg_2Cl_2)$ and B (He) is stronger than thermally buoyancy-driven convection $(Cr_t=1.66{\times}10^4)$. The crystal growth rate is decreased exponentially for $2.5\;{\leq}\;Ar\;{\leq}\;5$, with (1) the linear temperature profile and a fixed temperature difference, (2) the imposed thermal profile, a fixed crystal region and varied temperature difference. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. But, with the imposed thermal profile, a fixed source region and varied temperature difference, the rate is increased far $2\;{\leq}\;Ar\;{\leq}\;3$, and remains nearly unchanged for $3\;{\leq}\;Ar\;{\leq}\;5$.

단섬유 강화고무의 파열특성 연구 (A Study on Bursting Properties of Short-Fiber Reinforced Chloroprene Rubber)

  • 류상렬;이동주
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.543-549
    • /
    • 2006
  • The bursting properties under various conditions were investigated to ascertain the optimum conditions to yield the best properties. Fiber aspect ratio (AR: length of fiber/diameter of fiber), interphase condition and fiber content were considered as variables which impact the bursting pressure, bulge constant, torsional rigidity ratio. The bursting pressure of reinforced rubber increases up to 8.73 times compared to the virgin material. The better interphase condition shows the higher bursting pressure at given AR and fiber content. The bulge constant and torsional rigidity highly decrease with increasing AR and better interphase condition at same fiber content. The bulge constant and torsional rigidity reveal the minimum of 11% and 0.6% of the matrix, respectively. The bursted shape after test shows the different patterns between unfilled and reinforced rubbers. The case of virgin rubber shows a radiating shape while that of reinforced rubber shows a fluctuating straight line. Overall, it was found that the fiber AR and interphase condition have an important effect on bursting properties.

태양열 집광 흡수기내의 종횡비가 공간내의 열전달에 미치는 영향 (Study on the Heat Transfer into by Space by the Aspect Ratio of Solar Concentration Absorber.)

  • 이용훈;이중섭;배강열;정효민;정한식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.199-204
    • /
    • 2001
  • This paper showed the study on the heat transfer into space by the aspect ratio of solar concentration absorber, and the purpose of this study is to obtain the optimum aspect ratio and tilt angle. The boundary conditions of a numerical model were assumed as follows : (1) The heat source is located at the center of absorber. (2) The bottom was is opened and adiabatic. (3) The top, right and left walls are cooled wall. The parameters for the study are the tilt angles and the aspect ratio. The velocity vectors and isotherms were dense at wall side and the heat source. The mean Nusselt number had a maximum value at Ar=1:1 and $\theta=0^{\circ}$ and showed a low value as the tilt angles were increased.

  • PDF

종횡비에 따른 태양열 집광흡수기의 열전달특성 (Heat Transfer Charaeteristic of Solar Concentration Absorber by the Aspect Ratio)

  • 이용훈;이중섭;배강열;정효민;정한식
    • 동력기계공학회지
    • /
    • 제6권1호
    • /
    • pp.43-49
    • /
    • 2002
  • This paper showed the study on the heat transfer into space by the aspect ratio of solar concentration absorber, and the purpose of this study was to obtain the optimum aspect ratio and tilt angle. The boundary conditions of a numerical model are assumed as follows : (1) The heat source is located at the center of absorber. (2) The bottom wall is opened and adiabatic. (3) The top, right and left walls are cooled wall. The parameters for the study are the tilt angles and the aspect ratio. The velocity vectors and isotherms were dense at wall side and the heat source. The mean Nusselt number had a maximum value at Ar=1:1 and ${\theta}=0^{\circ}$ and showed a low value as the tilt angles were increased.

  • PDF

종횡비가 변하는 공동 내 자연대류의 공진주파수 (Resonance Frequency of the Natural Convection in the Closure Cavity for the Variable Aspect Ratio)

  • 전건호;주광섭;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.609-614
    • /
    • 2000
  • This numerical study investigate resonance frequency of natural convection for steady state, periodic flow and chaotic flow in two-dimensional direct numerical simulations, differentially heated, vertical cavities having aspect ratios near unity. The enclosure cavity has isothermal and time dependent temperature side walls and adiabatic top/bottom walls. The aspect ratio is 1/3, 1/2, 1, 2, and 3 for the varying Rayleigh number. Resonance frequency for AR=1 has decrease as the aspect ratio and the Rayleigh number are increasing.

  • PDF

수평채널 내 고 점성유체의 볼텍스 유동에 관한 3차원 수치해석(2) (Three-Dimensional Numerical Study on the Vortex Flow in a Horizontal Channels with High Viscous Fluid(2))

  • 박일용;김정수;배대석
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.36-42
    • /
    • 2015
  • TMixed convective flow in a bottom heated and top cooled rectangular channel can be significantly affected by the channel aspect ratio, Prandtl number, Reynolds number, Rayleigh number and angle of inclination. In such a mixed convection, the flow pattern plays an important role in various technological processes. In this study, a numerical investigation is carried out to explore mixed convection in a three-dimensional rectangular channel with bottom heated and top cooled uniformly. The three-dimensional governing equations are discretized using the finite volume method. In the range of low Reynolds number($0{\leq}Re{\leq}9.6{\times}10^{-2}$), the effects of the aspect ratio($2{\leq}AR{\leq}12$) and Gr/Re are presented and discussed. The longitudinal roll number in the channel is increased with increasing aspect ratio, and the roll number induced, regardless of the aspect ratio number, is even in the range of aspect ratios between 2 and 12, New vortex flow structure containing inclined longitudinal rolls is found, which is affected by aspect ratio and Reynolds number. The ratio Gr/Re is used to check the relative magnitudes of forced and natural convection in the mixed convective flow of high viscous fluid.