• Title/Summary/Keyword: Ascomycota

Search Result 130, Processing Time 0.02 seconds

Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

  • Miao, Cui-Ping;Mi, Qi-Li;Qiao, Xin-Guo;Zheng, You-Kun;Chen, You-Wei;Xu, Li-Hua;Guan, Hui-Lin;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.127-134
    • /
    • 2016
  • Background: Rhizospheric fungi play an essential role in the plantesoil ecosystem, affecting plant growth and health. In this study, we evaluated the fungal diversity in the rhizosphere soil of 2-yr-old healthy Panax notoginseng cultivated in Wenshan, China. Methods: Culture-independent Illumina MiSeq and culture-dependent techniques, combining molecular and morphological characteristics, were used to analyze the rhizospheric fungal diversity. A diffusion test was used to challenge the phytopathogens of P. notoginseng. Results: A total of 16,130 paired-end reads of the nuclear ribosomal internal transcribed spacer 2 were generated and clustered into 860 operational taxonomic units at 97% sequence similarity. All the operational taxonomic units were assigned to five phyla and 79 genera. Zygomycota (46.2%) and Ascomycota (37.8%) were the dominant taxa; Mortierella and unclassified Mortierellales accounted for a large proportion (44.9%) at genus level. The relative abundance of Fusarium and Phoma sequenceswas high, accounting for 12.9% and 5.5%, respectively. In total,113 fungal isolates were isolated from rhizosphere soil. They were assigned to five classes, eight orders (except for an Incertae sedis), 26 genera, and 43 species based on morphological characteristics and phylogenetic analysis of the internal transcribed spacer. Fusarium was the most isolated genus with six species (24 isolates, 21.2%). The abundance of Phoma was also relatively high (8.0%). Thirteen isolates displayed antimicrobial activity against at least one test fungus. Conclusion: Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens.

Distribution of spontaneously growing mushrooms in the Wolchulsan National Park (월출산국립공원의 자생버섯 분포상)

  • Ko, Pyung-Yeol;Lee, Seung-Hak;Kim, Tae-Heon;Choe, Suck-Young;Hong, Ki-Sung;Jeun, Yong-Chull
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.201-207
    • /
    • 2020
  • Mushrooms growing in the Wolchulsan National Park were surveyed from April to October 2018. As a result of this survey, 2 divisions, 9 classes, 24 orders, 71 families, 177 genera, and 407 species were found. Among them, 3 classes, 16 orders, 55 families, 150 genera, and 370 species belonged to Basidiomycota, while 6 classes, 8 orders, 16 families, 27 genera, and 37 species belonged to Ascomycota. The species richness was the highest in September at the altitudes between ~100 and 200 m. Among the investigated sites, the most diverse species occurred in the Gyeongpodae area. In this survey we found, Macrolepiota procera, Suillus bovinus, and Amanita pantherina, all of which have been known as climate-sensitive biological indicator species (CBIS). Based on the DNA sequence analyses, Craterellus parvogriseus was confirmed as a new record for Korea.

Genetic Diversity of Endophytic Fungi Isolated from the Roots of Halophytes Naturally Growing in Suncheon Bay (순천만에 자생하는 염생식물의 뿌리로부터 분리된 내생진균의 유전적 다양성)

  • Seo, Yeong-Gyo;Kim, Mi-Ae;You, Young-Hyun;Yoon, Hyeok-Jun;Woo, Ju-Ri;Lee, Gyeong-Min;Kim, Jong-Guk
    • The Korean Journal of Mycology
    • /
    • v.40 no.1
    • /
    • pp.7-10
    • /
    • 2012
  • Endophytic fungi were isolated from the roots of halophytes, Suaeda japonica and Carex scabrifolia in the Suncheonbay. The ITS region in rDNA of 15 endophytic fungal strains were amplified using PCR with universal primers ITS1 and ITS4, and those amplified fragments were sequenced. Based on ITS sequence, five fungal genera were identified in S. japonica and seven fungal genera were identified in C. scabrifolia. The Shannon's diversity index (H') of endophytic fungi isolated from S. japonica and C. scabrifolia was 1.561 and 1.889, respectively. In phylogenetic analysis, it was shown that Ascomycota and Pezizomycotina was widely distributed both in S. japonica and C. scabrifolia. Also, Sordariomycetes, Dothideomycetes and Eurotiomycetes were shown to be distributed in these halophytes used in this experiment.

Plant Growth-Promoting Activity and Genetic Diversity of Endophytic Fungi Isolated from Native Plants in Dokdo Islands for Restoration of a Coastal Ecosystem (해안 생태계의 복원을 위하여 독도에 자생하는 식물로부터 분리된 내생진균류의 식물생장촉진활성과 유전학적 다양성)

  • You, Young-Hyun;Yoon, Hyeokjun;Kim, Hyun;Lim, Sung Hwan;Shin, Jae-Ho;Lee, In-Jung;Choo, Yeon-Sik;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.95-101
    • /
    • 2013
  • In this study, plant samples of five species were collected from the Dokdo islands in South Korea. Plant samples such as Asparagus schoberioides, Corydalis platycarpa, Festuca rubra, Sedum oryzifolium, and Setaria viridis were collected from the Dongdo and Seodo. Endophytic fungal strains were isolated from the roots of five plants from the Dokdo islands. Thirty-three fungal strains were isolated from these native plants. All the endophytic fungi were analyzed by internal transcribed spacer (ITS) sequencing (ITS containing ITS1, 5.8s, and the ITS2 region). Waito-c rice seedlings were treated with fungal culture filtrates to test their plant growth-promoting activity. A bioassay of the D-So-1-1 fungal strain isolated from S. oryzifolium confirmed that it has the highest plant growth-promoting activity. All the endophytic fungi belong to four orders: Eurotiales (86%), Capnodiales (3%), Hypocreales (4%), and Incertae sedis (7%). The endophytic fungi were classified as Ascomycota, which contained Aspergillus (12%), Cladosporium (3%), Eurotium (3%), Fusarium (18%), Microsphaeropsis (6%), and Penicillium (58%) at the genus level.

Bacterial and fungal community composition across the soil depth profiles in a fallow field

  • Ko, Daegeun;Yoo, Gayoung;Yun, Seong-Taek;Jun, Seong-Chun;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.271-280
    • /
    • 2017
  • Background: Soil microorganisms play key roles in nutrient cycling and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depths, we analyzed microbial activities and bacterial and fungal community composition in soils up to a 120 cm depth at a fallow field located in central Korea. To examine the vertical difference of microbial activities and community composition, ${\beta}$-1,4-glucosidase, cellobiohydrolase, ${\beta}$-1,4-xylosidase, ${\beta}$-1,4-N-acetylglucosaminidase, and acid phosphatase activities were analyzed and barcoded pyrosequencing of 16S rRNA genes (bacteria) and internal transcribed spacer region (fungi) was conducted. Results: The activity of all the soil enzymes analyzed, along with soil C concentration, declined with soil depth. For example, acid phosphatase activity was $125.9({\pm}5.7({\pm}1SE))$, $30.9({\pm}0.9)$, $15.7({\pm}0.6)$, $6.7({\pm}0.9)$, and $3.3({\pm}0.3)nmol\;g^{-1}\;h^{-1}$ at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1, and 17.5% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3, and 0.4% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7% at 15, 30, 60, 90, and 120 cm depths, respectively), a dominant fungal group at this site, showed no clear trend along the soil profile. Conclusions: Our results show that soil C availability can determine soil enzyme activity at different soil depths and that bacterial communities have a clear trend along the soil depth at this study site. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.

Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea

  • Khalmuratova, Irina;Kim, Hyun;Nam, Yoon-Jong;Oh, Yoosun;Jeong, Min-Ji;Choi, Hye-Rim;You, Young-Hyun;Choo, Yeon-Sik;Lee, In-Jung;Shin, Jae-Ho;Yoon, Hyeokjun;Kim, Jong-Guk
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.373-383
    • /
    • 2015
  • Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, $GA_1$ (0.465 ng/mL), $GA_3$ (1.808 ng/mL) along with other physiologically inactive $GA_9$ (0.054 ng/mL) and $GA_{24}$ (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus.

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun;Miao, Cui-Ping;Chen, Hua-Hong;Huang, Fang-Fang;Xia, Yu-Mei;Chen, You-Wei;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

Genetic Diversity of Endophytic Fungal Strains Isolated from the Roots of Coastal Plants in Ulleung Island for Restoration of Coastal Ecosystem (해안 생태계 복원을 위한 울릉도에 자생하는 해안식물의 뿌리로부터 분리된 내생진균류의 유전적 다양성 분석)

  • Kim, Miae;You, Young-Hyun;Yoon, Hyeokjun;Kim, Hyun;Seo, Yeonggyo;Khalmuratova, Irina;Shin, Jae-Ho;Lee, In-Jung;Choo, Yeon-Sik;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1384-1391
    • /
    • 2012
  • Five coastal plant species, Artemisia fukudo, Aster sphathulifolius, Plantago camtschatica, Sedum oryzifolium, and Setaria viridis, were collected from the coastal region of Ulleung Island (Ulleung-Do, South Korea). Thirty-six endophytic fungi were isolated from the roots of these plants, and all were identified by using PCR with the following specifications: internal transcribed spacer 1 (ITS1), 5.8S rRNA, and ITS2 regions. Phylogenetic analysis indicated that all fungal strains belong to the phylum Ascomycota and comprise four orders (Capnodiales, Eurotiales, Hypocreales, and Pleosporales). Among all the identified species, the Eurotiales species were more abundant than species in the other orders. Nine different genera (Alternaria, Aspergillus, Cladosporium, Exserohilum, Fusarium, Neosartorya, Penicillium, Phoma, and Pyrenochaeta) in the four orders were confirmed. Penicillium and Aspergillus species were the most dominant species among the endophytic fungi isolated from the coastal plants. Shannon's diversity index (H') ranged from 0.684 to 1.609, and the endophytic fungi in S. oryzifolium was more diverse compared to the endophytic fungi in the other plants.

Seasonal Distribution and Diversity of Airborne Fungi in a Wooden Cultural Heritage Site: A Case Study of The Seonamsa Temple, Suncheon (목조문화재에서 계절에 따른 부유 진균의 분포 및 다양성에 관한 연구: 순천 선암사를 중심으로)

  • Hong, Jin Young;Kim, Young Hee;Lee, Jeung Min;Kim, Soo Ji;Jo, Chang Wook;Park, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.122-133
    • /
    • 2018
  • The Seonamsa temple is located on steep terrain surrounded by forests and valleys, and is a place that the temple is scared of biological damage because it has high humidity and low wind levels. Therefore, we investigated a concentration and diversity of airborne fungi in indoor and outdoor by collecting air each season. The outdoor fungal load was far higher in spring ($276CFU/m^3$), autumn ($196CFU/m^3$), summer ($128CFU/m^3$) than in winter ($24CFU/m^3$). The lowest located Jijangjeon and upper located Wontongjeon showed the highest distribution of $337.4CFU/m^3$ in summer and $333.4CFU/m^3$ in autumn, respectively. Summer is the season with large variations in the concentration of airborne fungi between indoor and outdoor, a concentration of airborne fungi in indoor was maximum three times higher than these in outdoor with $128CFU/m^3$. Although the most fungi were collected in spring, fungal diversity was richer in summer and autumn with 28 genera 45 species and 25 genera 47 species, respectively. In particular, the concentration of airborne fungi was the most highest in all sampling sites in autumn, of which Ascomycota members accounted for 86% and Cladosporium genus was dominated. The most kind of Penicillium (16 species) was mainly distributed in indoor air in summer, autumn and winter.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF