• Title/Summary/Keyword: Artillery

Search Result 172, Processing Time 0.017 seconds

Optimal Allocation Heuristic Method of Military Engineering Equipments during Artillery Position Construction Operation (휴리스틱 기법을 이용한 포병진지 구축작전시 공병장비 최적배정)

  • Park, Se Hwan;Lee, Moon Gul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • Artillery fire power due to effectiveness which is hard to predict well-planned and surprising attack can give a fear and shock to the personnel and is a very core weapon system and takes a critical role in wartime. Therefore in order to maximize operational effectiveness, Army required protecting artillery and takes a quick attack action through rapid construction of artillery's positions. The artillery use artillery's position to prevent exposure by moving to other position frequently. They have to move and construct at new artillery's positions quickly against exposing existed place by foe's recognition. These positions should be built by not manpower but engineering construction equipment. Because artillery positions have to protect human and artillery equipment well and build quickly. Military engineering battalion have lots of construction equipment which include excavator, loader, dozer, combat multi-purposed excavator, armored combat earthmover dump truck and so on. So they have to decide to optimal number of Team combining these equipments and determine construction sequence of artillery's position in operational plan. In this research, we propose to decide number of Team efficiently and allocate required construction's positions for each Team under constraints of limited equipments and time. To do so, we develop efficient heuristic method which can give near optimal solution and be applied to various situation including commander's intention, artillery position's priority or grouping etc. This heuristic can support quick and flexible construction plan of artillery positions not only for using various composition's equipment to organize Teams but also for changing quantity of positions.

Optimal Allocation Model of Anti-Artillery Radar by Using ArcGIS and its Specifications (지형공간정보와 제원 특성을 적용한 대포병레이더 최적배치모형)

  • Lee, Moon Gul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.74-83
    • /
    • 2018
  • It is very crucial activities that Korean army have to detect and recognize enemy's locations and types of weapon of their artillery firstly for effective operation of friendly force's artillery weapons during wartime. For these activities, one of the most critical artillery weapon systems is the anti-artillery radar (hereafter; radars) for immediate counter-fire operations against the target. So, in early wartime these radar's roles are very important for minimizing friendly force's damage because arbiters have to recognize a several enemy's artillery positions quickly and then to take an action right away. Up to date, Republic of Korea Army for tactical artillery operations only depends on individual commander's intuition and capability. Therefore, we propose these radars allocation model based on integer programming that combines ArcGIS (Geographic Information System) analysis data and each radar's performances which include allowable specific ranges of altitude, azimuth (FOV; field of view) and distances for target detection, and weapons types i.e., rocket, mortars and cannon ammo etc. And we demonstrate the effectiveness of their allocation's solution of available various types of radar asset through several experimental scenarios. The proposed model can be ensured the optimal detection coverage, the enhancement of artillery radar's operations and assisting a quick decision for commander finally.

Algorithms for Fire Sequencing Problem in Unplanned Artillery Attack Operation (포병부대 비계획 사격순서 결정 알고리즘)

  • Choi, Yong-Baek;Kim, Kyung-Sup
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.37-44
    • /
    • 2012
  • This paper focuses on scheduling problems arising in the military. In planned artillery attack operations, a large number of threatening enemy targets should be destroyed to minimize fatal loss to the friendly forces. We consider a situation in which the number of available weapons is smaller than the number of targets. Therefore it is required to develop a new sequencing algorithm for the unplanned artillery attack operation. The objective is to minimize the total loss to the friendly forces from the targets, which is expressed as a function of the fire power potential, after artillery attack operations are finished. We develop an algorithm considering the fire power potential and the time required to destroy the targets. The algorithms suggested in this paper can be used in real artillery attack operations if they are modified slightly to cope with the practical situations.

A Study on Mine Artillery Hit Using DEVS (DEVS을 이용한 갱도포병 타격에 관한 연구)

  • Chung, Young-Ho;Shin, Ki-Tae;Park, Jin-Woo
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.3
    • /
    • pp.45-51
    • /
    • 2008
  • The enemy will attempt to destroy our troop's core facilities using various fire supports at the beginning of war. Among these fire supports, artillery is given a most deal of weight and mine artillery is a great threat to our troops because it has a superior predominance on the ability of survival. A study about hitting mine artillery has been developed inside the military field only. However, these studies had been mostly qualitative analyses, thus having limitations in the aspects of nonobjectiveness and simplicity. Current study attempts to develop theory on hitting mine artillery beginning from mine opening until the target got hit, based on the assumption that one side which has inferior force will attack first. We studied on hitting mine artillery in a quantitative way using DEVS method.

  • PDF

Optimum Allocation Model of Military Engineer Equipments for Artillery Position Development (포병진지 구축을 위한 공병장비 최적배정 모형)

  • Jang, Young Cho;Lee, Moon Gul
    • Korean Management Science Review
    • /
    • v.34 no.2
    • /
    • pp.103-113
    • /
    • 2017
  • The artillery is a key element of the ground forces operation during wartime, and the military engineers support the artillery position development operation to support the smooth operation of the artillery. In establishing the artillery position development operation plan, the commander requires more than his intuition to find the best option reflecting a number of elements of the battlefield situation which changes every minute. Moreover, the number of available equipment is smaller than the number of required position developments, and the effective equipment operation becomes essential element of this issue. This study quantified the capability of the available engineering equipment, organized a number of teams enabling equipment to put out the maximum capacity based on the quantified figures, and formed the model which allocates the team to the developing points to minimize the developing time. The goal programming method was applied to resolve the problem. The developed model was applied to compare the total mission duration following the number of teams, the variable for commander's decision, and the result of this study can be used as the quantitative data for commander's decision making process in establishing the artillery position development support operation through effective equipment management.

Modeling and Analysis of Counterfire Warfare for Tactical Operation and Acquisition (전술적 운용과 무기체계 획득을 위한 대화력전 모델링과 분석)

  • Lim, Jong-Won;Lee, Tae-Eog;Kim, Dae-Kyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.175-184
    • /
    • 2013
  • In counterfire warfare, it is important to detect and attack enemy targets faster than the enemy using sensing and shooting assets. The artillery assets of North Korea are mostly mine artillery and much more than those of South Korea. To cope with sudden fire attacks from North Korea, we need to improve capability of our artillery. In this paper, we discuss issues and problems of our counterfire warfare systems and processes to overcome numerical inferiority and defend against the mine artillery. We develop a simulation model for counterfire warfare and analyze effectiveness of our counterfire weapon systems and operations based on various counterfire warfare scenarios. Finally, we propose methods of tactical operations and acquisition strategies of counterfire weapon systems, including detaction, firing, and protection assets.

A Study on Safety Standards for the Interior of an Artillery Firing Range Considering Probable Error (공산오차를 고려한 국내 포병사격장 안전기준 분석 연구)

  • Juhee Kim;Kieun Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.139-148
    • /
    • 2023
  • Safety standards for long-range artillery ammunition test and training sites follow the US artillery shooting range safety zone standards. Although the South Korean geographical conditions of shooting ranges are different from those of the United States, there is no safety standard reflecting the South Korean topographical characteristics. Probable error associated with the shooting range, trajectory should be considered in establishing the safety standards. In this study, we present the safety standards for the ammunition testing site suitable for the Korean situation, with applying a concept of trajectory and probable error differed by ammunition type, which are currently confirmed by the South Korean Army's artillery shooting.

A Field Artillery Targeting Problem with Time Window by Genetic Algorithm (유전자 알고리즘을 이용한 시간제약 포병 표적처리문제)

  • Seo, Jae-Uk;Kim, Ki-Tae;Jeong, Geon-Wook
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.2
    • /
    • pp.11-24
    • /
    • 2010
  • Quick precision-strike capability of the artillery will be an important factor in modern and future war and it's represented by NCW and EBO. This study is based on artillery which has time limitation of firing, such as artillery which hides when not firing, and modeling various situations to decide firing order and who to shoot. The main purpose of this study is to suggest a mathematical programming model and a genetic algorithm which satisfies the limitation of firing time. The objective function is to minimize the total firing time to spend. The results of the suggested algorithm quickly gives a best solution for a large scale field artillery targeting problems.

A Two-Stage Stochastic Approach to the Artillery Fire Sequencing Problem (2단계 추계학적 야전 포병 사격 순서 결정 모형에 관한 연구)

  • Jo, Jae-Young
    • Journal of the military operations research society of Korea
    • /
    • v.31 no.2
    • /
    • pp.28-44
    • /
    • 2005
  • The previous studies approach the field artillery fire scheduling problem as deterministic and do not explicitly include information on the potential scenario changes. Unfortunately, the effort used to optimize fire sequences and reduce the total time of engagement is often inefficient as the collected military intelligence changes. Instead of modeling the fire sequencing problem as deterministic model, we consider a stochastic artillery fire scheduling model and devise a solution methodology to integrate possible enemy attack scenarios in the evaluation of artillery fire sequences. The goal is to use that information to find robust solutions that withstand disruptions in a better way, Such an approach is important because we can proactively consider the effects of certain unique scheduling decisions. By identifying more robust schedules, cascading delay effects will be minimized. In this paper we describe our stochastic model for the field artillery fire sequencing problem and offer revised robust stochastic model which considers worst scenario first. The robust stochastic model makes the solution more stable than the general two-stage stochastic model and also reduces the computational cost dramatically. We present computational results demonstrating the effectiveness of our proposed method by EVPI, VSS, and Variances.

Enhancement of Artillery Simulation Training System by Neural Network (신경망을 이용한 포병모의훈련체계 향상방안)

  • Ryu, Hai-Joon;Ko, Hyo-Heon;Kim, Ji-Hyun;Kim, Sung-Shick
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • A methodology for the improvement of simulation based training system for the artillery is proposed in this paper. The complex nonlinear relationship inherent among parameters in artillery firing is difficult to model and analyze. By introducing neural network based simulation, accurate representation of artillery firing is made possible. The artillery training system can greatly benefit from the improved prediction. Neural networks learning is conducted using the conjugate gradient algorithm. The evaluation of the proposed methodology is performed through simulation. Prediction errors of both regression analysis model and neural networks model are analyzed. Implementation of neural networks to training system enables more realistic training, improved combat power and reduced budget.