• Title/Summary/Keyword: Artificial rain

Search Result 116, Processing Time 0.023 seconds

Calibration of Gauge Rainfall Considering Wind Effect (바람의 영향을 고려한 지상강우의 보정방법 연구)

  • Shin, Hyunseok;Noh, Huiseong;Kim, Yonsoo;Ly, Sidoeun;Kim, Duckhwan;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.19-32
    • /
    • 2014
  • The purpose of this paper is to obtain reliable rainfall data for runoff simulation and other hydrological analysis by the calibration of gauge rainfall. The calibrated gauge rainfall could be close to the actual value with rainfall on the ground. In order to analyze the wind effect of ground rain gauge, we selected the rain gauge sites with and without a windshield and standard rain gauge data from Chupungryeong weather station installed by standard of WMO. Simple linear regression model and artificial neural networks were used for the calibration of rainfalls, and we verified the reliability of the calibrated rainfalls through the runoff analysis using $Vflo^{TM}$. Rainfall calibrated by linear regression is higher amount of rainfall in 5%~18% than actual rainfall, and the wind remarkably affects the rainfall amount in the range of wind speed of 1.6~3.3m/s. It is hard to apply the linear regression model over 5.5m/s wind speed, because there is an insufficient wind speed data over 5.5m/s and there are also some outliers. On the other hand, rainfall calibrated by neural networks is estimated lower rainfall amount in 10~20% than actual rainfall. The results of the statistical evaluations are that neural networks model is more suitable for relatively big standard deviation and average rainfall. However, the linear regression model shows more suitable for extreme values. For getting more reliable rainfall data, we may need to select the suitable model for rainfall calibration. We expect the reliable hydrologic analysis could be performed by applying the calibration method suggested in this research.

Application of Artificial Neural Network to Improve Quantitative Precipitation Forecasts of Meso-scale Numerical Weather Prediction (중규모수치예보자료의 정량적 강수추정량 개선을 위한 인공신경망기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.97-107
    • /
    • 2011
  • For the purpose of enhancing usability of NWP (Numerical Weather Prediction), the quantitative precipitation prediction scheme was suggested. In this research, precipitation by leading time was predicted using 3-hour rainfall accumulation by meso-scale numerical weather model and AWS (Automatic Weather Station), precipitation water and relative humidity observed by atmospheric sounding station, probability of rainfall occurrence by leading time in June and July, 2001 and August, 2002. Considering the nonlinear process of ranfall producing mechanism, the ANN (Artificial Neural Network) that is useful in nonlinear fitting between rainfall and the other atmospheric variables. The feedforward multi-layer perceptron was used for neural network structure, and the nonlinear bipolaractivation function was used for neural network training for converting negative rainfall into no rain value. The ANN simulated rainfall was validated by leading time using Nash-Sutcliffe Coefficient of Efficiency (COE) and Coefficient of Correlation (CORR). As a result, the 3 hour rainfall accumulation basis shows that the COE of the areal mean of the Korean peninsula was improved from -0.04 to 0.31 for the 12 hr leading time, -0.04 to 0.38 for the 24 hr leading time, -0.03 to 0.33 for the 36 hr leading time, and -0.05 to 0.27 for the 48 hr leading time.

A Plot Scale Experiment to Assess the NPS Reduction of Sediment Trap for Non-irrigated Cropland (침사구의 밭 비점오염 저감효과 평가를 위한 포장실험 연구)

  • Park, Tae-Yang;Kim, Sung-Jae;Jang, Jeong-Ryeol;Choi, Kang-Won;Kim, Sang-Min
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.97-103
    • /
    • 2011
  • The purpose of this study was to analyze the pollutant reduction effect for non-irrigated crop land by nonpoint source pollution control. For a field scale monitoring, 6 plots (5m width and 22m length) and 3 sediment traps were installed. At the outlet of each plot, the stage gauges were installed for runoff monitoring. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Through the artificial irrigation, runoff from the plots were monitored. The SS, TOC, T-N, T-P, COD, NTU of sampled water were analyzed by standard methods. The SS, TOC, T-N, T-P, COD, NTU concentration of initial runoff were 15.00, 1.54, 5.27, 0.07, 4.72, 0.45mg/L, respectively. Four hours later than the initial runoff, the concentration was changed to 1.00, 0.94, 4.06, 0.01, 0.60, 0.33 mg/L, respectively. As a result of artificial irrigation, three out of four sediment traps were filled with runoff water from the experimental plots. One sediment trap was not filled with runoff water because the artificial irrigation was not supplied for two experimental plots. The stage of sediment traps were gradually lowered. However, the water quality didn't showed a decrease trend as the stage went down because the suspended solid was not equally collected during the water sampling.

Evaluation and Consideration on Environmental Radiation Analysis of Yeong-Gwang Nuclear Power Plant Site Inside&Outside(2000~2009 year) (영광원전 부지 내.외부의 환경방사능 분석에 대한 평가 및 고찰(2000~2009년))

  • Han, Sang-Jun;Lee, Seung-Jin;Lee, Goung-Jin;Lee, Na-Young;Kim, Hee-Gang;Mun, Ji-Yeon
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.71-78
    • /
    • 2011
  • Yeong-Gwang N.P.P Private Environment Supervisory Organization analyzed over 3,000 samples including 10 marine and 24 land samples from the year 2,000 to 2009. According to the results of the analysis, artificial nuclides that resulted from the effect of Yeong-Gwang Nuclear Power Plant operations were not detected in most samples. However, from the rain and seawater samples, which were taken from inside the plants such as the intake, the discharge and the observatory, $^3H$ was detected although it was below the regulation level. The $^3H$ concentration detected in the rain taken from the observatory, by the yearly average criterion, was 30.5~40.0 $Bq{\cdot}L^{-1}$, which is around 20 times the $^3H$ concentration detected in the surroundings of the power plants, but it is 0.1% of the regulation level of 40,000 $Bq{\cdot}L^{-1}$. Also, $^3H$ concentration detected in the seawater taken from the intake and the discharge, by the yearly average criterion, was 2.75~17.8$Bq{\cdot}L^{-1}$, which means the concentration detected in the discharge is about 140~280% higher than that detected in the intake except the year 2006. Based on these results, it was determined that, although lower than the regulation level, the $^3H$ in gas and liquid form detected in the rain and seawater sampled from the observatory and the discharge was released into the environment from the power plants. Therefore, regular monitoring and analysis is required on the level of $^3H$ in the observatory and the discharge.

Influence of Artificial Rainfall on Wheat Grain Quality During Ripening by Using the Speed-breeding System (세대단축시스템을 이용한 국내 밀 품종의 등숙기 강우에 의한 품질변이 평가)

  • Hyeonjin Park;Jin-Kyung Cha;So-Myeong Lee;Youngho Kwon;Jisu Choi;Ki-Won Oh;Jong-Hee Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.188-196
    • /
    • 2023
  • Wheat (Triticum aestivum L.) is an important crop in Korea, with a per capita consumption of 31.6 kg in 2019. In the southern region, wheat is grown after paddy rice, and it is harvested during the rainy season in mid-June. This timing, in combination with high humidity and untimely rainfall, activates the enzyme alpha-amylase, which breaks down starch in the wheat grains. As a result, sprouted grains have lower quality and value for flour. However, seeds that absorb water before sprouting are expected to maintain better quality. The aim of the study was to identify the critical period during wheat maturation when rainfall has the greatest impact on grain quality, to prevent price declines due to quality deterioration. Two wheat cultivars, Jokyoung and Hwanggeumal, were grown in a speed breeding room, and artificial rainfall was applied at different times after heading (30, 35, 40, 45, 50, and 55 days). The proportion of vitreous grains decreased from 40 to 55 days after heading (DAH). Both cultivars had chalky grain sections from 35 DAH, with Hwanggeumal having a higher proportion of vitreous grains. Starch degradation was observed using FE-SEM (Field Emission Scanning Electron Microscope) at 40 DAH for Jokyoung and 50 DAH for Hwanggeumal. Color measurements indicated increased L and E values from 40 DAH, with rain treatment at 55 DAH leading to a significant increase in L values for both cultivars. Ash content increased at 45 DAH, whereas SDSS decreased at 35 DAH. Overall, grain quality from 40 DAH until harvest was found to be affected to the greatest extent by direct exposure of the spikes to moisture. Red wheat showed better quality than white wheat. These findings have implications for the cultivation of high-quality wheat and can guide future research efforts in this area.

A Study on Deterioration of Stone Monuments by Acid Fog (산성안개에 의한 석조문화재 구성암석의 손상 연구)

  • Do, Jin Young;Kim, Sang Woo;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.135-145
    • /
    • 2015
  • In order to predict the deterioration of stone monument due to acid fog, an artificial fog test using pH4.0 and pH5.6 was applied to the Gyeongju Namsan granite, decite and marble. After the test had weathered Gyeongju Namsan granite a larger weight reduction due to acid fog than fresh one. Decite has shown the most significant changes among the tested rocks with about 0.005 % of weight reduction. Decite and weathered granite will have considerable weight reduction due to acid rain than the acid fog, whereas the marble was expected to show a weight reduction regardless of the phase of water. The porosity and water absorption rate of weathered granite had significantly increased. This result means that the weathered rock is predicted to be more susceptible to acid fog than the fresh rock. The absorption rate of the marble after the test had shown approximately 50 % increase. The color of the samples had slightly changed towards yellow, such tendency was greater shown in weathered rocks. The marble reacted with acid fog had an increased whiteness. A large amount of cation in the samples is caused mainly by the dissociation of minerals through the reaction with acid fog.

Experimental Studies on Dissolution Characteristics of a Heavy Metal(As) in Mining Waste (광산매립지에서 중금속(As)의 용출 특성에 관한 실험적 연구)

  • Han, Choon;Seo, Myoung-Jo;Yoon, Do-Young;Choi, Sang-Il;Lee, Hwa-Young;Kim, Sung-Kyu;Oh, Jong-Kee
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.55-63
    • /
    • 1998
  • This study investigates the contamination mechanism of soil by drainages including acid rains around mining waste sites, and suggests the quantitative methods of prevention against soil contaminations and its alternatives. For these purposes, the dissolution of arsenic in soils, which is one of toxic heavy metals, has been examined experimentally using the artificial acidic solution. Also, in order to prevent dissolution of arsenic by acid rain, the effects of limestone for the neutrality method on the soil were investigated. The arsenic in soil specimen was dissolved by strong acidic solution below pH1.0. The maximum amount of dissolved arsenic increased with decreasing pH value. Furthermore, it was found very effective to use limestones for the neutrality method. The neutralization of limestones in acidic solution was found to follow the equation of chemical reaction-controlling formulation in unreacted-core models.

  • PDF

Case Study on the Application of Chain Saw Machine for the Underground Marble Quarrying (갱내 대리석 채석을 위한 체인쏘머신 적용 사례연구)

  • Ju, Jaeyeol;Lee, Kwangpyo;Kim, Jaedong
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.180-191
    • /
    • 2013
  • The purpose of this research was to find an optimal quarrying for marble by analyzing the applicability and the work efficiency of a chain saw machine newly introduced in the underground Baekwoon mine. From the test results of the physical properties of Baekwoon marble, which affects the efficiency of rock cutting, it was found to have similar physical characteristics as the ones which are now being produced in the other areas in Korea. And especially it shows isotropic property, which can be thought to be advantageous as a dimensional stone. To check the long-term quality of the marble as a stone material, several tests such as corrosion resistance test and abrasion test were carried out. It was found to be vulnerable to acid rain with decrease of weight and seismic wave velocity after applying artificial rain at pH 5.6 for 50 times. The percentage of wear from abrasion test was 22.67%. The working time and cutting speed of the chain saw machine were recorded and analyzed during the test-run at the quarry. The overall work cycle was assorted into 9 unit operations and the operating time per each unit was drawn. The operating times for the two cutting patterns, which could be possibly applicable to the work site, were compared. The results indicated that the pattern B, that the cutting sequence was set to minimize the movement of the machine, showed 6% less working hours than the pattern A, which first cuts the outer boundary. With cutting pattern analysis, the ore body in the Baekwoon mine was 3 dimensionally modeled and a quarrying plan considering the existing conditions of the marble was suggested.

Conservation Scheme and Deterioration States of the Wanggung-ri Five-storied Stone Pagoda in the Iksan, Korea (익산 왕궁리 5층 석탑의 훼손현황과 보존방안 연구)

  • Yang, Hee-Jae;Lee, Chan-Hee;Kim, Sa-Dug;Choi, Seok-Won
    • 보존과학연구
    • /
    • s.25
    • /
    • pp.171-195
    • /
    • 2004
  • This research presents an evaluation of the weathering and deterioration state of the Wanggung-ri five-storied stone pagoda in the Iksan (National Treasure No. 289) and suggests conservational schemes. A deterioration map of the pagoda was drawn from the aspects of petrological, physical, chemical, biological, structural and artificial weathering.The rock properties consisting of the pagoda were medium-grained biotite granite that had leucocratic phenocryst developed in parts. The body of each story suffered severely from the secondary contamination that turned the colors into light grey, pitch dark, yellowish brown, and reddish brown as well as granular decomposition, exfoliation and peel-off. The roof stones were heavy exfoliated or peeled off in most of the cases. In addition to the fine cracks, there were layered cracks on the corners. The roof stones of the3rd and 4th story in the north and west side had some stones fall-off, while those of the 2ndstory in the north side had steel reinforcement filled for a fixing purpose. Those of the 5th story showed big gaps that must have originated from cracks and were easily subject to granular decomposition and rainfall. The inside clay filler was missing in the lower part of the roof stones of the 4th and 5th story and the supporting stones, which were thus covered by light grey or pitch dark sediments. The contact area of the materials was about 70 % in the parts where there was a space due to the filler missing and washigher than 90 % in the lower parts of the pagoda. About 90 % or more of the roof stones surface of each story were covered by aerial plants that formed a thick biological mat. Thus it seemed necessary to come up with the conservational measures to remove the plans living on the surface of the stone materials, with the plans to prevent rain from falling inside, and with the water repellent and hardening treatments to postpone the surface weathering of the rock properties. All those measures and plans must be based on the results of long-term monitoring and thorough detail investigations.

  • PDF

Assessment of Soil Loss in Irrigation Reservoir based on GIS (GIS를 이용한 관개용 저수지의 토사유실량 산정에 관한 연구)

  • Park, Woo Sik;Hong, Soon Heon;Ahn, Chang Hwan;Choi, Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.439-446
    • /
    • 2013
  • This paper is about assessment of soil loss in irrigation reservoir based on GIS. Natural disaster caused by soil loss whose natural incidence has been rapidly reduced due to successful tree planting campaign shows high potential risk, since the latest localized heavy rain resulted from extreme weather event and artificial land development acts as direct factors for land disaster. To prevent it, various techniques and technologies have been used to predict effect of soil loss. However, reliability of techniques and technologies to predict its effect precisely is relatively low so far because the natural disaster by soil loss is taken place by complicated interaction between possible factors and direct factors. Geospatial approach is essential to examine these interactions. In this regard, this study will provide detailed plan to improve prediction reliability for soil loss of irrigation reservoir, using GIS that has Hydrologic -Topographical parameter and digital map as its input parameters.