In a competitive and globalized business environment, the need for the green products becomes stronger. To meet these trends, the environmental assessment besides delivery, cost and quality of products should be considered as an important factor in new product development phase. In this paper. a knowledge-based approximate life cycle assessment system (KALCAS) for the collaborative design environment is developed to assess the environmental impacts in context of product concept development. It aims at improving the environmental efficiency of the product using artificial neural networks consisting of high-level product attributes and LCA results. The overall framework of the collaborative environment including KALCAS is proposed. This architecture uses the CO environment to allow users on a wide variety of platforms to access the product data and other related information. It enables us to trade-off the evaluation results between the objectives of the product development including the approximate environmental assessment in the collaborative design environment.
This paper proposes an approximate LCA methodology fur the conceptual design stage by grouping products according to their environmental characteristics and by mapping product attributes Into impact driver (ID) index. The relationship Is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then an artificial neural network model is developed to predict an approximate LCA of grouping products in conceptual design stage. The training is generalized by using identified product attributes for an ID In a group as well as another product attributes for another IDs in other groups. The neural network model with back propagation algorithm is used and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give an approximate LCA results for design concepts.
International Journal of Computer Science & Network Security
/
제21권4호
/
pp.214-222
/
2021
Recently, the growth of e-commerce in Saudi Arabia has been exponential, bringing new remarkable challenges. A naive approach for product matching and categorization is needed to help consumers choose the right store to purchase a product. This paper presents a machine learning approach for product matching that combines deep learning techniques with standard artificial neural networks (ANNs). Existing methods focused on product matching, whereas our model compares products based on unstructured descriptions. We evaluated our electronics dataset model from three business-to-consumer (B2C) online stores by putting the match products collectively in one dataset. The performance evaluation based on k-mean classifier prediction from three real-world online stores demonstrates that the proposed algorithm outperforms the benchmarked approach by 80% on average F1-measure.
In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. So, the design parameters related preform shape such as aspect ratio and chamfer length having an influence the formability of forged product are analyzed. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing preform shape in metal forming process.
Many studies on predicting and recommending information and products have been studying to meet customers' preference. Unnecessary information should be removed to satisfy customers' needs in massive information. The some information filtering methods to remove unnecessary information have been suggested but these methods have scarcity and scalability problems. Therefore, this paper explores a personalized recommendation system based on artificial neural network (ANN) to solve these problems. The insurance product recommendation is adapted as an example to demonstrate the proposed method. The proposed recommendation system is expected to recommended a suitable and personalized insurance products for customers' satisfaction.
Solubilization of domestic household waste through Steam explosion with Subsequent ethanol production by the microbial saccharifitation and fermentation of the exploded product was studied. The effects of steam explosion on the changes of the density, viscosity, pH, and amounts of extractive components in artificial household waste were determined. The composition of artificial waste used was similar to leftover waste discharged from a typical home in Japan. Consecutive microbial saccharification and fermentation, and simultaneous microbial saccharification and fermentation of the Steam-exploded product were attempted using Aspergillus awamori, Trichoderma viride, and Saccharomyces cerevisiae; the ethanol yields of each process were compared. The highest ethanol yield was obtained with simultaneous microbial saccharification and fermentation of exploded product at a steam pressure of 2 MPa and a steaming time of 3 min.
The purpose of this study is recycling of ready mixed concrete sludge as artificial aggregate by product technique of artificial aggregate in the normal temerature. For the qulity test of artificial aggregate using ready mixed concrete sludge, it is tested in the various aspect. Therefor, Quality of artificil aggregate is suitable as coarse aggregate except absoption, abrasion. For the application of aggregate in cement concrete, Coarse aggregate are replaced with artificial aggregate using ready mixed concrete sludge 100% of volume. The results of test shown that the artificial aggregate using ready mixed concrete sludge could be used replacement of coarse aggregate in cement concrete.
In the early phases of the product life cycle, Life Cycle Assessment (LCA) is recently used to support the decision-making for the product concepts, and the best alternative can be selected based on its estimated LCA and benefits. Both the lack of detailed information and time for a full LCA for a various range of design concepts need a new approach for the environmental analysis. This paper explores a new approximate LCA methodology for the product concepts by grouping products according to their environmental characteristics and by mapping product attributes into environmental impact driver (EID) index. The relationship is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then, a neural network approach is developed to predict an approximate LCA of grouping products in conceptual design. Trained learning algorithms for the known characteristics of existing products will quickly give the result of LCA for newly designed products. The training is generalized by using product attributes for an EID in a group as well as another product attributes for the other EIDs in other groups. The neural network model with back propagation algorithm is used, and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give some useful guidelines for the design of environmentally conscious products in conceptual design phase.
In this study, an artificial neural network(ANN) was constructed to establish the relationship between process condition prameters and the qualities of the injection-molded product in the injection molding process. Six process parmeters were set as input parameter for ANN: melt temperature, mold temperature, injection speed, packing pressure, packing time, and cooling time. As output parameters, the mass, nominal diameter, and height of the injection-molded product were set. Two learning structures were applied to the ANN. The single-task learning, in which all output parameters are learned in correlation with each other, and the multi-task learning structure in which each output parameters is individually learned according to the characteristics, were constructed. As a result of constructing an artificial neural network with two learning structures and evaluating the prediction performance, it was confirmed that the predicted value of the ANN to which the multi-task learning structure was applied had a low RMSE compared with the single-task learning structure. In addition, when comparing the quality specifications of injection molded products with the prediction values of the ANN, it was confirmed that the ANN of the multi-task learning structure satisfies the quality specifications for all of the mass, diameter, and height.
In this study, an artificial neural network model was constructed to convert CAE analysis data into similar experimental data. In the analysis and experiment, the injection molding data for 50 conditions were acquired through the design of experiment and random selection method. The injection molding conditions and the weight, height, and diameter of the product derived from CAE results were used as the input parameters for learning of the convert model. Also the product qualities of experimental results were used as the output parameters for learning of the convert model. The accuracy of the convert model showed RMSE values of 0.06g, 0.03mm, and 0.03mm in weight, height, and diameter, respectively. As the next step, additional randomly selected conditions were created and CAE analysis was performed. Then, the additional CAE analysis data were converted to similar experimental data through the conversion model. An artificial neural network model was constructed to predict the quality of injection molded product by using converted similar experimental data and injection molding experiment data. The injection molding conditions were used as input parameters for learning of the predicted model and weight, height, and diameter of the product were used as output parameters for learning. As a result of evaluating the performance of the prediction model, the predicted weight, height, and diameter showed RMSE values of 0.11g, 0.03mm, and 0.05mm and in terms of quality criteria of the target product, all of them showed accurate results satisfying the criteria range.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.