The brand and product awareness of Korean electronics companies in the North American market has grown significantly and North American consumers has been recognized as an innovative technology products good performance of Korean electronics appliances. The consumer need of energy saving has led to a rise in market share because Korean electronics appliances have the excellence in energy saving aspects. The expansion of smartphones and mobile devices and the development of smart grid technology can affect electronics market. Domestic companies are continuously develop new product to provide consumers convenient with a variety of additional features combined consumer products. This study proposes a convergence model for sales prediction of electronic appliances using sales data of A company from the North American market. We develop the convergence model for sales prediction based on based on artificial neural network and genetic algorithm. In addition, we validate the superiority of the proposed convergence model by comparing the prediction performance of traditional prediction models.
Im, Jung-Ju;Kim, Tae-Wan;Lim, Ji-Seoup;Kim, Jun-Ho;Yoo, Tae-Yong;Lee, Won Joo
Journal of the Korea Society of Computer and Information
/
v.27
no.5
/
pp.29-36
/
2022
In this paper, we propose an efficient agricultural products price prediction model based on dataset which provided in DACON. This model is XGBoost and CatBoost, and as an algorithm of the Gradient Boosting series, the average accuracy and execution time are superior to the existing Logistic Regression and Random Forest. Based on these advantages, we design a machine learning model that predicts prices 1 week, 2 weeks, and 4 weeks from the previous prices of agricultural products. The XGBoost model can derive the best performance by adjusting hyperparameters using the XGBoost Regressor library, which is a regression model. The implemented model is verified using the API provided by DACON, and performance evaluation is performed for each model. Because XGBoost conducts its own overfitting regulation, it derives excellent performance despite a small dataset, but it was found that the performance was lower than LGBM in terms of temporal performance such as learning time and prediction time.
Hyoung-Joon Park;Heesung Moon;Min Kyoung Lee;Min Soo Kim;Seok Heo;Chang-Yong Yoon;Sunyoung Baek
Analytical Science and Technology
/
v.36
no.1
/
pp.22-31
/
2023
As the use of e-liquid cigarettes is rapidly increasing worldwide, it multiplies the potential risk undisclosed to the health of non- and smokers. To reduce the hazard, each country has its own set of regulations for controlling e-liquids. In Korea, the narrow definition of tobacco makes it difficult and have been steadily occurring tax evasion exploiting the difference in natural and artificial nicotine. Therefore, it is very important to distinguish source of nicotine for their regulation. To find biochemical discriminant markers, this study established analysis methods based on high-performance liquid chromatography coupled with diode array detector (HPLC-DAD) and high-performance liquid chromatography coupled with triple Quadrupole mass spectrometry (HPLC-MS/MS) for nicotine enantiomers and tobacco alkaloids targeted using the difference in pathways of nicotine biosynthesis and chemical synthesis. The method was validated by experimenting linearity (R2 > 0.999), recovery (80.99-108.41 %), accuracy (94.11-109.73 %) and precision (0.04-8.27 %). Then, the results for discrimination of the nicotine obtained from analysis of 65 commercial e-liquid products available in Korean market was evaluated. The method successfully applied to the e-liquids and one sample labelled 'synthetic nicotine' for tax exemption was found to contain a natural nicotine product. This method can be used to determine whether an e-liquid product uses natural or artificial nicotine and monitor non-taxable e-liquid products. The method is more scientific than the existing one, which relies only on field evidence.
Jong-Hyeok Park;Sang-Hyun Yoo;Soo-Hee Han;Kyeong-Jun Kim
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.1
/
pp.119-126
/
2024
In building information model (BIM), it is difficult to train an artificial intelligence (AI) model due to the lack of sufficient data about individual projects in an architecture firm. In this paper, we present a methodology to correctly train an AI neural network model based on a large language model (LLM) to predict the steel structure product weight ratios in BIM. The proposed method, with the aid of the LLM, can overcome the inherent problem of limited data availability in BIM and handle a combination of natural language and numerical data. The experimental results showed that the proposed method demonstrated significantly higher accuracy than methods based on a smaller language model. The potential for effectively applying large language models in BIM is confirmed, leading to expectations of preventing building accidents and efficiently managing construction costs.
Fur garment has long been the conventional symbol for luxury, or conspicuous consumption. However, as fashion items began to diversify as part of overall fashion trend, fur items are now more about individual taste and style than just lavishness. Synthetic fur is especially emerging as a new promising fashion material, with a touch almost like natural fur at an affordable price. Along with the emergence of 'Vegan Fashion' trend, synthetic fur is establishing itself as a popular fashion textile. This study is an attempt to investigate subjective evaluation and physical properties of natural and synthetic furs, whose results will further serve as basic data in developing synthetic fur materials. Sensory and emotional evaluations are carried out on natural and artificial furs. For analysis, factors such as weight, thickness, air permeability, gloss and compressibility were surveyed to observe how they influence the physical properties. According to the subjective evaluation, natural and artificial fur samples do not differ in conspicuous ways in appearance. Experiments on physical properties, specifically warm/cool touch experiment, show that natural fur has a slightly higher warm sensation than artificial fur. Luster analysis by using a microscope revealed that there are subtle qualitative differences between natural and artificial fur. During the subjective evaluation, subjects found it hard to state distinct quantitative differences in luster. A survey as a means of assessing qualitative differences in gloss seems to be necessary to complement the evaluation. Results from this study will potentially serve as resources for diversification of fashion product designs using synthetic fur.
Kim, Ho-Hyun;Lim, Young-Wook;Kim, Sun-Duk;Yeo, In-Young;Shin, Dong-Chun;Yang, Ji-Yeon
Asian Journal of Atmospheric Environment
/
v.6
no.3
/
pp.206-221
/
2012
Hazardous chemicals can be released from artificial turf used in some school playgrounds. To distinguish between Health risk assessment (HRA) exposure scenarios for this study, the ratio of elementary, middle and high schools was considered before final selection. Considering exposure pathways (inhalational, oral and dermal), media and materials were examined, targeting hazardous chemicals released from artificial turf playground-related products. Upon evaluation, the quantity of infill chips was shown to exceed the domestic product content standard (90 mg/kg) at eight (16%) out of 50 schools. PAHs were shown to exceed standards (10 mg/kg) at two (4%) out of the 50 schools. The excess cancer risk (ECR) of carcinogens was shown to be $1{\times}10^{-6}$ in most users for the worst exposure scenario. In children with pica, who represented the most extreme exposure group, the ECR was expected to be as high as $1{\times}10^{-4}$, showing the low risk level of carcinogens. The hazard index (HI) for individual chemicals was shown to be low, at around 0.1 or less, except for children with pica, according to the mean exposure scenario of artificial turf playground exposure. However, the HI was shown to exceed 1.0 in children with pica. Therefore, no direct health risk was found in using artificial turf playgrounds and urethane flooring tracks for the mean exposure scenario, except in children with pica.
Journal of the Korea Society of Computer and Information
/
v.25
no.1
/
pp.199-206
/
2020
In this study, the factors affecting consumers' intention to use AI speakers were focused on the perceived value of the product and the perceived necessity of the product. Factors affectationist consumers' perceived value of the product were divided into benefits and costs. Reflecting the characteristics of information technology products, I included perceptions of usefulness of products. Empirical results show that consumers' perceptions of perceived benefits and usefulness of AI speaker products have a positive effect on perceived value and perceived necessity. Perception of necessity had a positive (+) significant effect on perception of value. Perception of necessity and perception of value had a positive(+) and positive effect on each intention of use. However, the cost perceived by consumers did not have a significant effect on perception of value.
With the advancement of artificial intelligence (AI) techniques, many consumer products have adopted AI features for providing proactive and personalized services to customers. One of the most prominent products featuring AI techniques is a smart speaker. The fundamental of smart speaker is a portable wireless Internet connecting speaker which already have existed in a consumer market. By applying AI techniques, smart speakers can recognize human voices and communicate with them. In addition, they can control other connecting devices and provide offline services. The goal of this study is to identify the impact of AI techniques for customer rating to the products. We compared customer reviews of other portable speakers without AI features and those of a smart speaker. Amazon echo is used for a smart speaker and JBL Flip 4 Bluetooth Speaker and Ultimate Ears BOOM 2 Panther Limited Edition are used for the comparison. These products are in the same price range ($50~100) and selected as featured products in Amazon.com. All reviews for the products were collected and common words for all products and unique words of the smart speaker were identified. Information gain values were calculated to identify the influences of words to be rated as positive or negative. Positive and negative words in all the products or in Amazon echo were identified, too. Topic modeling was applied to the customer reviews on Amazon echo and the importance of each topic were measured by summating information gain values of each topic. This study provides a way of identifying customer responses on the AI feature and measuring the importance of the feature among diverse features of the products.
Proceedings of the Korean Radioactive Waste Society Conference
/
2003.11a
/
pp.534-538
/
2003
Final disposal of radioactive waste generated from Nuclear Power Plant (NPP) requires the detailed knowledge of the natures and quantities of radionuclides in waste package. Many of these radionuclides are difficult to measure and expensive to assay. Thus it is suggested to the Indirect method by which the concentrations of DTM (Difficult-to-Measure) nuclide is decided using the relation of concentrations (Scaling Factor) between Key (Easy-to-Measure) nuclide and DTM nuclide with measured concentrations of Key nuclide. In general, scaling factor is determined by using of log mean average (LMA) and regression. These methods are adequate to apply most corrosion product nuclides. But in case of fission product nuclides and some corrosion product nuclides, the predicted values aren't well matched with the original values. In this study, the models using artificial neural network (ANN) for C-14 and Sr-90 are compared with those using LMA and regression. The assessment of models is executed in the two parts divided by a training part and a validation part. For all of two nuclides in the training part, the predicted values using ANN are well matched with the measured values compared with those using LMA and regression. In the validation part, the accuracy of the predicted values using ANN is better than that using LMA and is similar to or better than that using regression. It is concluded that the predicted values using ANN model are better than those using conventional model in some nuclides and ANN model can be used as the complement of LMA and regression model.
Journal of Korean Society of Industrial and Systems Engineering
/
v.45
no.4
/
pp.233-239
/
2022
The injection molding process is a process in which thermoplastic resin is heated and made into a fluid state, injected under pressure into the cavity of a mold, and then cooled in the mold to produce a product identical to the shape of the cavity of the mold. It is a process that enables mass production and complex shapes, and various factors such as resin temperature, mold temperature, injection speed, and pressure affect product quality. In the data collected at the manufacturing site, there is a lot of data related to good products, but there is little data related to defective products, resulting in serious data imbalance. In order to efficiently solve this data imbalance, undersampling, oversampling, and composite sampling are usally applied. In this study, oversampling techniques such as random oversampling (ROS), minority class oversampling (SMOTE), ADASYN(Adaptive Synthetic Sampling), etc., which amplify data of the minority class by the majority class, and complex sampling using both undersampling and oversampling, are applied. For composite sampling, SMOTE+ENN and SMOTE+Tomek were used. Artificial neural network techniques is used to predict product quality. Especially, MLP and RNN are applied as artificial neural network techniques, and optimization of various parameters for MLP and RNN is required. In this study, we proposed an SA technique that optimizes the choice of the sampling method, the ratio of minority classes for sampling method, the batch size and the number of hidden layer units for parameters of MLP and RNN. The existing sampling methods and the proposed SA method were compared using accuracy, precision, recall, and F1 Score to prove the superiority of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.