제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
/
pp.742-745
/
1994
In this paper we show the performance of neural Chandrasekhar filtering which is a special case for the new method of neural filtering using the artificial neural network systems developed recently for the filtering problems of linear and nonlinear, stationary and nonstationary stochastic signals. The neurofilter developed has either the finite impulse response(FIR) structure or the infinite impulse response(IIR) structure. The neurofilter differs from the conventional linear digital FIR and IIR filters because the artificial neural network system used in the neurofilter has nonlinear structure due to the sigmoid function. Numerical studies for the estimation of a second order Butterworth process are performed by changing the structures of the neurofilter in order to evaluate the performance indices under the changes of the output noises or disturbances. In the numerical studies both Chandrasekhar filtering estimates and true signals are used as the training signals for the neurofilter. The results obtained from the studies verified the capabilities which are essentially necessary for on-line filtering of various stochastic signals.
해저지진 시 해양구조물의 진동제어를 위한 인공지능 능동제어기법을 제안하였다. 해양구조물의 동적거동은 유체-구조물 상호작용에 의한 비선형 거동을 고려하였으며 인공신경망의 학습기법을 이용하여 해양구조물의 진동제어기를 구현하였다. 수치해석결과 비제어시와 수동제어 그리고 본 연구에서 개발한 인공신경망 제어기법에 의한 성능을 비교하였다. 진동제어 성능은 능동제어가 가장 우수하였으며 신경망 제어기법은 비선형거동을 하는 해양구조물에 적용하여도 그 성능이 매우 뛰어남을 확인하였다.
한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
/
pp.235-241
/
2000
This article suggests integrated neural network models for the interest rate forecasting using change point detection. The basic concept of proposed model is to obtain intervals divided by change point, to identify them as change-point groups, and to involve them in interest rate forecasting. the proposed models consist of three stages. The first stage is to detect successive change points in interest rate dataset. The second stage is to forecast change-point group with data mining classifiers. The final stage is to forecast the desired output with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. This article is then to examine the predictability of integrated neural network models for interest rate forecasting using change-point detection.
In general, Evoluationary Algorithm(EAs) are refered to as methods of population-based optimization. And EAs are considered as very efficient methods of optimal sytem design because they can provice much opportunity for obtaining the global optimal solution. This paper presents a co-evolution scheme of artifical neural networks, which has two different, still cooperatively working, populations, called as a host popuation and a parasite population, respectively. Using the conventional generatic algorithm the host population is evolved in the given environment, and the parastie population composed of schemata is evolved to find useful schema for the host population. the structure of artificial neural network is a diagonal recurrent neural netork which has self-feedback loops only in its hidden nodes. To find optimal neural networks we should take into account the structure of the neural network as well as the adaptive parameters, weight of neurons. So we use the genetic algorithm that searches the structure of the neural network by the co-evolution mechanism, and for the weights learning we adopted the evolutionary stategies. As a results of co-evolution we will find the optimal structure of the neural network in a short time with a small population. The validity and effectiveness of the proposed method are inspected by applying it to the stabilization and position control of the invered-pendulum system. And we will show that the result of co-evolution is better than that of the conventioal genetic algorithm.
본 연구는 C.G.S공법 적용 지반을 설치 직경, 설치 간격, 면적 치환율, 지반강성에 따른 모델링을 실시함으로써 주변 지반의 거동을 파악하고자 하였고, 인공신경망의 매개변수 연구를 통해 본 연구에 가장 적합한 인공신경망 모델을 선정하여 수치해석과 인공신경망 연계를 통한 인공신경망 예측 모델을 개발하였다. 그 결과, C.G.S 말뚝 침하량 및 지반 침하량은 직경, 설치 간격, 면적 치환율, 지반강성 별로 일치하여 하나의 곡선으로 나타났으며, 이는 C.G.S 공법 적용 지반의 거동양상이 일정한 형태로 나타남을 의미하는 것으로, 이러한 결과를 바탕으로 3차원 거동에 대한 인공신경망 학습이 가능한 것으로 파악되었다. 인공신경망의 내적인자 연구 결과, 은닉층 뉴런수 10개, 모멘텀 상수 0.2, 학습률의 경우 0.2를 사용할 경우 입력과 출력간의 관계가 적절히 표현되는 것으로 나타났다. 이러한 인공신경망 모델의 최적구조를 이용하여 C.G.S 공법의 지반 거동을 평가한 결과는 결정계수 값이 C.G.S 말뚝 침하의 경우는 0.8737, 지반 침하의 경우는 0.7339, 지반 융기의 경우는 0.7212로 나타나 충분한 신뢰도를 보이고 있음을 알수 있었다.
This paper focuses on the application of artificial neural networks (ANN) for optimal design of tensegrity grid as light-weight roof structures. A tensegrity grid, 2 m ${\times}$ 2 m in size, is fabricated by integrating four single tensegrity modules based on half-cuboctahedron configuration, using galvanised iron (GI) pipes as struts and high tensile stranded cables as tensile elements. The structure is subjected to destructive load test during which continuous monitoring of the prestress levels, key deflections and strains in the struts and the cables is carried out. The monitored structure is analyzed using finite element method (FEM) and the numerical model verified and updated with the experimental observations. The paper then explores the possibility of applying ANN based on multilayered feed forward back propagation algorithm for designing the tensegrity grid structure. The network is trained using the data generated from a finite element model of the structure validated through the physical test. After training, the network output is compared with the target and reasonable agreement is found between the two. The results demonstrate the feasibility of applying the ANNs for design of the tensegrity structures.
This study provides fragility-based assessment of seismic performance of reinforced concrete bridges. Seismic fragility curves were created using nonlinear analysis (NA) and artificial neural networks (ANNs). Nonlinear response history analyses were performed, in order to calculate the seismic performances of the bridges. To this end, 306 bridge-earthquake cases were considered. A multi-layered perceptron (MLP) neural network was implemented to predict the seismic performances of the selected bridges. The MLP neural networks considered herein consist of an input layer with four input vectors; two hidden layers and an output vector. In order to train ANNs, 70% of the numerical results were selected, and the remained 30% were employed for testing the reliability and validation of ANNs. Several structures of MLP neural networks were examined in order to obtain suitable neural networks. After achieving the most proper structure of neural network, it was used for generating new data. A total number of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, probabilistic seismic safety analyses were conducted. Herein, fragility curves were developed using numerical results, neural predictions and the combination of numerical and neural data. Results of this study revealed that ANNs are suitable tools for predicting seismic performances of RC bridges. It was also shown that yield stresses of the reinforcements is one of the important sources of uncertainty in fragility analysis of RC bridges.
This paper presents an efficient algorithm for the estimation of damage location and severity in structure using Probabilistic Neural Network (PNN). Artificial neural network has been being used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training data for neural network learning and ambiguity in the relation of neural network architecture with convergence of solution. In this paper, PNN is used as a pattern classifier to overcome those problems in the conventional neural network. The basic idea of damage assessment algorithm proposed in this paper is that modal characteristics from a damaged structure are compared with the training patterns which represent the damage in specific element to determine how close it is to training patterns in terms of the probability from PNN. The training pattern that gives a maximum probability implies that the element used in producing the training pattern is considered as a damaged one. The proposed damage assessment algorithm using PNN is applied to a 2-span continuous beam model structure to verify the algorithm.
International Journal of Advanced Culture Technology
/
제11권2호
/
pp.249-255
/
2023
This study aims to empirically confirm the effect and impact of community care design research centered on domestic space and environment on health promotion, diagnosis treatment, disease management, rehabilitation, and mitigation through the year of publication and perspective. To this end, based on 1,227 space and environment design studies from 2,144 community care design research data conducted for about 20 years from 2002 to 2022, when care services began in earnest through the long-term care system for the elderly, SPSS 26.0 was used to create a 'Multi-layer Perceptron' artificial neural network structure model was predicted and neural network analysis was performed. Research Results First, as a result of checking studies in each field of health care by year, there is a significant difference with the number of studies related to health promotion being the highest. Second, the five perspectives are region, time, dimension, function, and content perspective. As a result of inputting these variables as independent variables and analyzing their importance in the artificial neural network, the function perspective had the most influence, followed by the region > content > dimension > time perspective.
현재 인공지능과 딥 러닝이 사회적인 이슈로 떠오르고 있는 추세이며, 다양한 분야에 이 기술들을 응용하고 있다. 인공지능 분야의 여러 알고리즘들 중에서 각광받는 방법 중 하나는 Convolutional Neural Network이다. Convolutional Neural Network를 적은 양의 데이터에서 이용하거나, Layer의 구조가 복잡하지 않은 경우에는 학습시간이 길지 않아 속도에 크게 신경 쓰지 않아도 되지만, 학습 데이터의 크기가 크고, Layer의 구조가 복잡할수록 학습시간이 상당히 오래 걸린다. 이로 인해 GPU를 이용하여 병렬처리를 하는 방법을 많이 사용하는데, 본 논문에서는 CUDA를 이용한 Convolutional Neural Network를 구현하였으며, 비교에 사용한 Framework/Program들 보다 학습속도가 빨라지고 큰 데이터를 학습 시키는데 더욱 효율적으로 진행하도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.