• Title/Summary/Keyword: Artificial neural Networks (ANN)

Search Result 375, Processing Time 0.026 seconds

Estimating Optimal Parameters of Artificial Neural Networks for the Daily Forecasting of the Chlorophyll-a in a Reservoir (호소내 Chl-a의 일단위 예측을 위한 신경망 모형의 적정 파라미터 평가)

  • Yeon, Insung;Hong, Jiyoung;Mun, Hyunsaing
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.533-541
    • /
    • 2011
  • Algal blooms have caused problems for drinking water as well as eutrophication. However it is difficult to control algal blooms by current warning manual in rainy season because the algal blooms happen in a few days. The water quality data, which have high correlations with Chlorophyll-a on Daecheongho station, were analyzed and chosen as input data of Artificial Neural Networks (ANN) for training pattern changes. ANN was applied to early forecasting of algal blooms, and ANN was assessed by forecasting errors. Water temperature, pH and Dissolved oxygen were important factors in the cross correlation analysis. Some water quality items like Total phosphorus and Total nitrogen showed similar pattern to the Chlorophyll-a changes with time lag. ANN model (No. 3), which was calibrated by water temperature, pH and DO data, showed lowest error. The combination of 1 day, 3 days, 7 days forecasting makes outputs more stable. When automatic monitoring data were used for algal bloom forecasting in Daecheong reservoir, ANN model must be trained by just input data which have high correlation with Chlorophyll-a concentration. Modular type model, which is combined with the output of each model, can be effectively used for stable forecasting.

Design of tensegrity structures using artificial neural networks

  • Panigrahi, Ramakanta;Gupta, Ashok;Bhalla, Suresh
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.223-235
    • /
    • 2008
  • This paper focuses on the application of artificial neural networks (ANN) for optimal design of tensegrity grid as light-weight roof structures. A tensegrity grid, 2 m ${\times}$ 2 m in size, is fabricated by integrating four single tensegrity modules based on half-cuboctahedron configuration, using galvanised iron (GI) pipes as struts and high tensile stranded cables as tensile elements. The structure is subjected to destructive load test during which continuous monitoring of the prestress levels, key deflections and strains in the struts and the cables is carried out. The monitored structure is analyzed using finite element method (FEM) and the numerical model verified and updated with the experimental observations. The paper then explores the possibility of applying ANN based on multilayered feed forward back propagation algorithm for designing the tensegrity grid structure. The network is trained using the data generated from a finite element model of the structure validated through the physical test. After training, the network output is compared with the target and reasonable agreement is found between the two. The results demonstrate the feasibility of applying the ANNs for design of the tensegrity structures.

Free vibration analysis of FGM plates using an optimization methodology combining artificial neural networks and third order shear deformation theory

  • Mohamed Janane Allah;Saad Hassouna;Rachid Aitbelale;Abdelaziz Timesli
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.633-643
    • /
    • 2023
  • In this study, the natural frequencies of Functional Graded Materials (FGM) plates are predicted using Artificial Neural Network (ANN). A model based on Third-order Shear Deformation Theory (TSDT) and FEM is used to train the ANN model. Different training methods are tested to simulate input and output dependency. As this is a parametric model, several architectures and optimization algorithms were tested. The proposed model allows us to minimize the CPU time to evaluate candidate material properties for FGM plate material selection and demonstrate their influence on dynamic behavior. Consequently, the time required for the FGM design process (candidate materials for material selection) and the geometric optimization of the FGM structure would remain reasonable. The ANN model can help industries to produce FGM plates with good mechanical properties of the selected materials. I addition, this model can be used to directly predict vibration behavior by testing a large number of FGM plates, representing all possible combinations of metals and ceramics in today's industry, without having to solve any eigenvalue problems.

The use of neural networks for the prediction of the settlement of pad footings on cohesionless soils based on standard penetration test

  • Erzin, Yusuf;Gul, T. Oktay
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.541-564
    • /
    • 2013
  • In this study, artificial neural networks (ANNs) were used to predict the settlement of pad footings on cohesionless soils based on standard penetration test. To achieve this, a computer programme was developed to calculate the settlement of pad footings from five traditional methods. The footing geometry (length and width), the footing embedment depth, $D_f$, the bulk unit weight, ${\gamma}$, of the cohesionless soil, the footing applied pressure, Q, and corrected standard penetration test, $N_{cor}$, varied during the settlement analyses and the settlement value of each footing was calculated for each method. Then, an ANN model was developed for each traditional method to predict the settlement by using the results of the analyses. The settlement values predicted from the ANN model were compared with the settlement values calculated from the traditional method for each method. The predicted values were found to be quite close to the calculated values. It has been demonstrated that the ANN models developed can be used as an accurate and quick tool at the preliminary designing stage of pad footings on cohesionless soils without a need to perform any manual work such as using tables or charts. Sensitivity analyses were also performed to examine the relative importance of the factors affecting settlement prediction. According to the analyses, for each traditional method, $N_{cor}$ is found to be the most important parameter while ${\gamma}$ is found to be the least important parameter.

Prediction of acceleration and impact force values of a reinforced concrete slab

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2014
  • Concrete which is a composite material is frequently used in construction works. Properties and behavior of concrete are significant under the effect of different loading cases. Impact loading which is a sudden dynamic one may have destructive effects on structures. Testing apparatuses are designed to investigate the impact effect on test members. Artificial Neural Network (ANN) is a computational model that is inspired by the structure or functional aspects of biological neural networks. It can be defined as an emulation of biological neural system. In this study, impact parameters as acceleration and impact force values of a reinforced concrete slab are obtained by using a testing apparatus and essential test devices. Afterwards, ANN analysis which is used to model different physical dynamic processes depending on several variables is performed in the numerical part of the study. Finally, test and predicted results are compared and it's seen that ANN analysis is an alternative way to predict the results successfully.

Automatic interpretation of awaked EEG by using constructive neural networks with forgetting factor

  • Nakamura, Masatoshi;Chen, Yvette;Sugi, Takenao;Ikeda Akio;Shibasaki Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.505-508
    • /
    • 1995
  • The automatic interpretation of awake background electroencephalogram (EEG), consisting of quantitative EEG interpretation and EEG report making, has been developed by the authors based on EEG data visually inspected by an electroencephalographer (EEGer). The present study was focused on the adaptability of the automatic EEG interpretation which was accomplished by the constructive neural network with forgetting factor. The artificial neural network (ANN) was constructed so as to give the integrative decision of the EEG by using the input signals of the intermediate judgment of 13 items of the EEG. The feature of the ANN was that it adapted to any EEGer who gave visual inspection for the training data. The developed method was evaluated based on the EEG data of 57 patients. The re-trained ANN adapted to another EEGer appropriately.

  • PDF

A Study on the Voltage Regulation Method Based on Artificial Neural Networks for Distribution Systems Interconnected with Distributed Generation (분산전원이 연계된 배전계통에 있어서 ANN을 이용한 최적 전압조정방안에 관한 연구)

  • Rho, Dae-Seok;Kim, Eui-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3130-3136
    • /
    • 2009
  • This paper deals with the optimal on-line real time voltage regulation methods in power distribution systems interconnected with the Distributed Generation(DG) systems. In order to deliver suitable voltage to as many customers as possible, the optimal sending voltage should be decided by the effective voltage regulation method by using artificial neural networks to consider the rapid load variation and random operation characteristics of DG systems. The results from a case study show that the proposed method can be a practical tool for the voltage regulation in distribution systems including many DG systems.

A Study on Subsidence of Soft Ground Using Artificial Neural Network (인공신경망을 이용한 DCM 처리된 연약지반 침하에 대한 연구)

  • Kang, Yoon-Kyung;Jang, Won-Yil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.914-921
    • /
    • 2010
  • When industrial structures are constructed on soft ground, ground subsidence is occurred by problems of bearing capacity. To protect ground subsidence have to improve soft ground, and have to predict settlement estimation for reasonable construction. Artificial Neural Networks(ANN) is adopted for prediction of settlement of construction during the initial design. In the study, Artificial Neural Networks are applied to predict the settlement estimation of initial condition ground and ground improved by D.C.M method. Also, this study compares results of Artificial Neural Networks and results of continuum analysis using Mohr-Coulomb models. In result, settlements of initial condition ground decreased over 0.7 times. Also, by comparing ANN and continuum analysis, coefficient of determination was comparatively high value 0.79. Thought this study, it was confirmed that settlements of improvement ground is predicted using laboratory experiment data.

Classification of Water Areas from Satellite Imagery Using Artificial Neural Networks

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Jung, Won-Jo
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • Every year, several typhoons hit the Korean peninsula and cause severe damage. For the prevention and accurate estimation of these damages, real time or almost real time flood information is essential. Because of weather conditions, images taken by optic sensors or LIDAR are sometimes not appropriate for an accurate estimation of water areas during typhoon. In this case SAR (Synthetic Aperture Radar) images which are independent of weather condition can be useful for the estimation of flood areas. To get detailed information about floods from satellite imagery, accurate classification of water areas is the most important step. A commonly- and widely-used classification methods is the ML(Maximum Likelihood) method which assumes that the distribution of brightness values of the images follows a Gaussian distribution. The distribution of brightness values of the SAR image, however, usually does not follow a Gaussian distribution. For this reason, in this study the ANN (Artificial Neural Networks) method independent of the statistical characteristics of images is applied to the SAR imagery. RADARS A TSAR images are primarily used for extraction of water areas, and DEM (Digital Elevation Model) is used as supplementary data to evaluate the ground undulation effect. Water areas are also extracted from KOMPSAT image achieved by optic sensors for comparison purpose. Both ANN and ML methods are applied to flat and mountainous areas to extract water areas. The estimated areas from satellite imagery are compared with those of manually extracted results. As a result, the ANN classifier performs better than the ML method when only the SAR image was used as input data, except for mountainous areas. When DEM was used as supplementary data for classification of SAR images, there was a 5.64% accuracy improvement for mountainous area, and a similar result of 0.24% accuracy improvement for flat areas using artificial neural networks.

  • PDF

EFFECTS OF RANDOMIZING PATTERNS AND TRAINING UNEQUALLY REPRESENTED CLASSES FOR ARTIFICIAL NEURAL NETWORKS

  • Kim, Young-Sup;Coleman Tommy L.
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.45-52
    • /
    • 2002
  • Artificial neural networks (ANN) have been successfully used for classifying remotely sensed imagery. However, ANN still is not the preferable choice for classification over the conventional classification methodology such as the maximum likelihood classifier commonly used in the industry production environment. This can be attributed to the ANN characteristic built-in stochastic process that creates difficulties in dealing with unequally represented training classes, and its training performance speed. In this paper we examined some practical aspects of training classes when using a back propagation neural network model for remotely sensed imagery. During the classification process of remotely sensed imagery, representative training patterns for each class are collected by polygons or by using a region-growing methodology over the imagery. The number of collected training patterns for each class may vary from several pixels to thousands. This unequally populated training data may cause the significant problems some neural network empirical models such as back-propagation have experienced. We investigate the effects of training over- or under- represented training patterns in classes and propose the pattern repopulation algorithm, and an adaptive alpha adjustment (AAA) algorithm to handle unequally represented classes. We also show the performance improvement when input patterns are presented in random fashion during the back-propagation training.

  • PDF