References
- Zineddin, M. and Krauthammer, T. (2007), "Dynamic response and behavior of reinforced concrete slabs under impact loading", Int. J. Imp. Eng., 34, 1517-1534. https://doi.org/10.1016/j.ijimpeng.2006.10.012
- Suaris, W. and Shah, S.P. (1983), "Properties of concrete subjected to impact", J. Struct. Eng., 109, 1727-1741. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:7(1727)
- Yankelevsky, D.Z. (1997), "Local response of concrete slabs to low velocity missile impact", Int. J. Imp. Eng., 19(4), 331-343. https://doi.org/10.1016/S0734-743X(96)00041-3
- Tai, Y.S. and Tang, C.C. (2006), "Numerical simulation: The dynamic behavior of reinforced concrete plates under normal impact", Theo. Appl. Fract. Mech., 45, 117-127. https://doi.org/10.1016/j.tafmec.2006.02.007
- Nataraja, M.C, Dhang, N. and Gupta, A.P. (1999), "Statistical variations in impact resistance of steel fiber-reinforced concrete subjected to drop weight test", Cement Concrete Res., 29, 989-995. https://doi.org/10.1016/S0008-8846(99)00052-6
- Siewert, T.A. and Manahan, M.P. (2000), Pendulum Impact Testing: A Century of Progress, ASTM International, West Conshohocken, PA, USA.
- Guang, N.H. and Zong, W.J. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30, 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8
- Siddique, R., Aggarwal, P., Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng. Softw., 42, 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016
- Slonski, M. (2010), "A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks", Comput. Struct., 88, 1248-1253. https://doi.org/10.1016/j.compstruc.2010.07.003
- Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
- Kim, J.I. and Kim, D.K. (2002), "Application of neural networks for estimation of concrete strength", KSCE J. Civ. Eng., 6(4), 429-438 https://doi.org/10.1007/BF02841997
- Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Construct. Build. Mat., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Yeh, I.C. (1998), "Modeling of strength of high performance concrete using artificial neural networks", Cement Concrete Res., 28(2), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Kim, J.I., Kim, D.K., Feng, M.Q. and Yazdani, F. (2004), "Application of neural networks for estimation of concrete strength", J. Civ. Eng., 16(4), 257-264. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(257)
- Caglar, N. and Garip, S.G. (2013), "Neural network based model for seismic assessment of existing RC buildings", Comput. Concr., 12(2), 229-241. https://doi.org/10.12989/cac.2013.12.2.229
- Erdem, R.T., Kantar, E., Gucuyen, E. and Anil, O. (2013), "Estimation of compression strength of polypropylene fibre reinforced concrete using artificial neural networks", Comput. Concrete, 12(5), 613-625. https://doi.org/10.12989/cac.2013.12.5.613
- Demir, F. (2008), "Prediction of elastic modulus of normal and high strength concrete by artificial neural networks", Construct. Build. Mat., 22(7), 1428-1435. https://doi.org/10.1016/j.conbuildmat.2007.04.004
- Uysal, M. and Tanyildizi, H. (2013), "Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural networks", Construct. Build. Mat., 27(1), 404-414.
Cited by
- Impact dynamics and energy dissipation capacity of fibre-reinforced self-compacting concrete plates vol.138, 2017, https://doi.org/10.1016/j.conbuildmat.2017.02.011
- Investigation of lateral impact behavior of RC columns vol.22, pp.1, 2014, https://doi.org/10.12989/cac.2018.22.1.123
- Experimental Investigation of Impact Behaviour of RC Slab with Different Reinforcement Ratios vol.24, pp.1, 2014, https://doi.org/10.1007/s12205-020-1168-x
- Experimental and numerical investigation of impact behavior of reinforced concrete slab with different support conditions vol.21, pp.6, 2014, https://doi.org/10.1002/suco.202000216