• Title/Summary/Keyword: Artificial neural Networks (ANN)

Search Result 375, Processing Time 0.027 seconds

Estimation of moment and rotation of steel rack connections using extreme learning machine

  • Shariati, Mahdi;Trung, Nguyen Thoi;Wakil, Karzan;Mehrabi, Peyman;Safa, Maryam;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.427-435
    • /
    • 2019
  • The estimation of moment and rotation in steel rack connections could be significantly helpful parameters for designers and constructors in the initial designing and construction phases. Accordingly, Extreme Learning Machine (ELM) has been optimized to estimate the moment and rotation in steel rack connection based on variable input characteristics as beam depth, column thickness, connector depth, moment and loading. The prediction and estimating of ELM has been juxtaposed with genetic programming (GP) and artificial neural networks (ANNs) methods. Test outcomes have indicated a surpass in accuracy predicting and the capability of generalization in ELM approach than GP or ANN. Therefore, the application of ELM has been basically promised as an alternative way to estimate the moment and rotation of steel rack connection. Further particulars are presented in details in results and discussion.

Prediction of the Water Level of the Tidal River using Artificial Neural Networks and Stationary Wavelets Transform (인공신경망과 정상 웨이블렛 변환을 활용한 감조하천 수위 예측)

  • Lee, Jeongha;Hwang, SeokHwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.357-357
    • /
    • 2021
  • 홍수로 인한 침수피해 발생을 최소화하기 위해 정확한 하천의 수위 예측과 리드타임 확보가 매우 중요하다. 특히 조석현상의 영향을 받는 감조하천의 경우 기존의 물리적 수문모형의 적용이 제한되어 하천수위 예측의 정확도가 떨어지기도 한다. 따라서 본 연구에서는 이러한 감조하천 수위 예측의 정확도를 높이기 위해 조석현상을 분리하고 인공신경망을 활용하는 하이브리드 모델을 제안 하였으며 다중 선형회귀분석과 비교 분석하였다. 감조하천에 위치한 교량의 수위데이터에서 Stationary Wavelet Transform으로 조석현상을 분리하였으며, 이외의 수위에 영향을 주는 time series data와 인공신경망(ANN)을 활용하여 1시간, 2시간, 3시간 후의 수위를 예측하였다. 하이브리드 모델은 96% 이상의 정확도를 보였으며 다중 선형회귀 분석과 비교하여도 높은 정확성을 보여주었다.

  • PDF

The use of data mining methods for dystocia detection in Polish Holstein-Friesian Black-and-White cattle

  • Zaborski, Daniel;Proskura, Witold S.;Grzesiak, Wilhelm
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.11
    • /
    • pp.1700-1713
    • /
    • 2018
  • Objective: The aim of this study was to verify the usefulness of artificial neural networks (ANN), multivariate adaptive regression splines (MARS), naïve Bayes classifier (NBC), general discriminant analysis (GDA), and logistic regression (LR) for dystocia detection in Polish Holstein-Friesian Black-and-White heifers and cows and to indicate the most influential predictors of calving difficulty. Methods: A total of 1,342 and 1,699 calving records including six categorical and four continuous predictors were used. Calving category (difficult vs easy or difficult, moderate and easy) was the dependent variable. Results: The maximum sensitivity, specificity and accuracy achieved for heifers on the independent test set were 0.855 (for ANN), 0.969 (for NBC), and 0.813 (for GDA), respectively, whereas the values for cows were 0.600 (for ANN), 1.000 and 0.965 (for NBC, GDA, and LR), respectively. With the three categories of calving difficulty, the maximum overall accuracy for heifers and cows was 0.589 (for MARS) and 0.649 (for ANN), respectively. The most influential predictors for heifers were an average calving difficulty score for the dam's sire, calving age and the mean yield of the farm, where the heifer was kept, whereas for cows, these additionally included: calf sex, the difficulty of the preceding calving, and the mean daily milk yield for the preceding lactation. Conclusion: The potential application of the investigated models in dairy cattle farming requires, however, their further improvement in order to reduce the rate of dystocia misdiagnosis and to increase detection reliability.

A Study of the Method for Estimating the Missing Data from Weather Measurement Instruments (인공신경망을 이용한 기상관측장비 결측 보완 기술에 관한 연구)

  • Min, Jae-Sik;Lee, Moo-Hun;Jee, Joon-Bum;Jang, Min
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.245-252
    • /
    • 2016
  • The purpose of this study is to make up for missing of weather informations from ASOS and AWS using artificial neural networks. We collected temperature, relative humidity and wind velocity for August during 5-yr (2011-2015) and sample designed artificial neural networks, assuming the Seoul weather station was missing. The result of sensitivity study on number of epoch shows that early stopping appeared at 2,000 epochs. Correlation between observation and prediction was higher than 0.6, especially temperature and humidity was higher than 0.9, 0.8 respectively. RMSE decreased gradually and training time increased exponentially with respect to increase of number of epochs. The predictability at 40 epoch was more than 80% effect on of improved results by the time the early stopping. It is expected to make it possible to use more detailed weather information via the rapid missing complemented by quick learning time within 2 seconds.

Relative Importance of Bottom-up vs. Top-down Controls on Size-structured Phytoplankton Dynamics in a Freshwater Ecosystem: II. Investigation of Controlling Factors using Statistical Modeling Analysis (담수성 식물플랑크톤의 크기별 동태에 대한 상향식, 하향식 조절간의 상대적 중요도 조사: II. 통계 모델링 분석을 이용한 조절인자 분석)

  • Song, Eun-Sook;Lim, Jang-Seob;Chang, Nam-Ik;Sin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.4 s.114
    • /
    • pp.445-453
    • /
    • 2005
  • Relative importance between bottom-up and top-down controls on phytoplankton dynamics was investigated in the Juam Reservoir, Chonnam based on the results from statistical analyses including regression and artificial neural network (ANN) modeling. Effects of nutrients on size-structured phytoplankton dynamics were explored by simple linear regression analysis and relative importance between bottom-up and top-down controls was estimated based on results from the artificial neural network analyses. Although there is a limitation in determining direct grazing effects since chlorophyll a : pheopigments ratios, indirect index for grazing activity rather than grazing rates or herbivores biomass were used, the results from regression analysis showed that nutrients especially orthophosphates were positively correlated with the phytoplankton biomass and chlorophyll a : pheopigments ratios were also positively correlated with the phytoplankton biomass at lower coefficient of determination ($r^2$) compared to orthophosphates. The simulation results from ANN suggested that the bottom-up mechanisms including water temperature and availability of nutrients, especially orthophosphates were more important than top-down mechanisms such as grazing in the phytoplankton dynamics.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

Neural-based prediction of structural failure of multistoried RC buildings

  • Hore, Sirshendu;Chatterjee, Sankhadeep;Sarkar, Sarbartha;Dey, Nilanjan;Ashour, Amira S.;Balas-Timar, Dana;Balas, Valentina E.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.459-473
    • /
    • 2016
  • Various vague and unstructured problems encountered the civil engineering/designers that persuaded by their experiences. One of these problems is the structural failure of the reinforced concrete (RC) building determination. Typically, using the traditional Limit state method is time consuming and complex in designing structures that are optimized in terms of one/many parameters. Recent research has revealed the Artificial Neural Networks potentiality in solving various real life problems. Thus, the current work employed the Multilayer Perceptron Feed-Forward Network (MLP-FFN) classifier to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistoried RC building structure in the future. In order to evaluate the proposed method performance, a database of 257 multistoried buildings RC structures has been constructed by professional engineers, from which 150 RC structures were used. From the structural design, fifteen features have been extracted, where nine features of them have been selected to perform the classification process. Various performance measures have been calculated to evaluate the proposed model. The experimental results established satisfactory performance of the proposed model.

AVK based Cryptosystem and Recent Directions Towards Cryptanalysis

  • Prajapat, Shaligram;Sharma, Ashok;Thakur, Ramjeevan Singh
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.97-110
    • /
    • 2016
  • Cryptanalysis is very important step for auditing and checking strength of any cryptosystem. Some of these cryptosystem ensures confidentiality and security of large information exchange from source to destination using symmetric key cryptography. The cryptanalyst investigates the strengths and identifies weakness key as well as enciphering algorithm. With increase in key size the time and effort required to guess the correct key increases so trend is increase key size from 8, 16, 24, 32, 56, 64, 128 and 256 bits to strengthen the cryptosystem and thus algorithm continues without compromise on the cost of time and computation. Automatic Variable Key (AVK) approach is an alternative to the approach of fixing up key size and adding security level with key variability adds new dimension in the development of secure cryptosystem. Likewise, whenever any new cryptographic method is invented to replace per-existing vulnerable cryptographic method, its deep analysis from all perspectives (Hacker / Cryptanalyst as well as User) is desirable and proper study and evaluation of its performance is must. This work investigates AVK based cryptic techniques, in future to exploit benefits of advances in computational methods like ANN, GA, SI etc. These techniques for cryptanalysis are changing drastically to reduce cryptographic complexity. In this paper a detailed survey and direction of development work has been conducted. The work compares these new methods with state of art approaches and presents future scope and direction from the cryptic mining perspectives.

Design of the anvil shape in sizing press for decrease of the defect generated width reduction (사이징 프레스에서 폭 압하 공정중 결함 감소를 위한 엔빌의 형상설계)

  • Lee S.H.;Kim D.H.;Byon S.M.;Park H.D.;Kim B.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.437-438
    • /
    • 2006
  • Generally, the vertical roll process is used to achieve extensive width reduction in hot strip mill. However, it is difficult to avoid the defects such as dog-bone and seam-defect. The sizing press has been developed in response to the defects mentioned above. Especially, this study is carried out to investigate the deformation of slab by two-step sizing press. The deformation behavior in the width sizing process is more favorable than that in conventional vertical rolling edger. The objective of this study is to determine the optimal anvil shape parameters in the sizing press with two-step die from the viewpoint of edge-seam length. In general, the edge-seam defect occurs parallel to the rolling direction at both edges in horizontal rolling process after sizing press. The optimal combination of the parameters is determined by FE-simulation and Artificial Neural Network (ANN). The slab deformation in sizing press with convex anvil is analyzed by FE-simulation. The most suitable profile of the anvil is also discussed fur the improvement of trimming loss because of the side seam defect by FE-simulation and ANN.

  • PDF

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.