• Title/Summary/Keyword: Artificial neural Networks (ANN)

Search Result 375, Processing Time 0.032 seconds

Wave Height and Downtime Event Forecasting in Harbour with Complex Topography Using Auto-Regressive and Artificial Neural Networks Models (자기회귀 모델과 신경망 모델을 이용한 복잡한 지형 내 항만에서의 파고 및 하역중단 예측)

  • Yi, Jin-Hak;Ryu, Kyong-Ho;Baek, Won-Dae;Jeong, Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.180-188
    • /
    • 2017
  • Recently, as the strength of winds and waves increases due to the climate change, abnormal waves such as swells have been also increased, which results in the increase of downtime events of loading/unloading in a harbour. To reduce the downtime events, breakwaters were constructed in a harbour to improve the tranquility. However, it is also important and useful for efficient port operation by predicting accurately and also quickly the downtime events when the harbour operation is in a limiting condition. In this study, numerical simulations were carried out to calculate the wave conditions based on the forecasted wind data in offshore area/outside harbour and also the long-term observation was carried out to obtain the wave data in a harbour. A forecasting method was designed using an auto-regressive (AR) and artificial neural networks (ANN) models in order to establish the relationship between the wave conditions calculated by wave model (SWAN) in offshore area and observed ones in a harbour. To evaluate the applicability of the proposed method, this method was applied to predict wave heights in a harbour and to forecast the downtime events in Pohang New Harbour with highly complex topography were compared. From the verification study, it was observed that the ANN model was more accurate than the AR model.

Classification of Natural and Artificial Forests from KOMPSAT-3/3A/5 Images Using Artificial Neural Network (인공신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류)

  • Lee, Yong-Suk;Park, Sung-Hwan;Jung, Hyung-Sup;Baek, Won-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1399-1414
    • /
    • 2018
  • Natural forests are un-manned forests where the artificial forces of people are not applied to the formation of forests. On the other hand, artificial forests are managed by people for their own purposes such as producing wood, preventing natural disasters, and protecting wind. The artificial forests enable us to enhance economical benefits of producing more wood per unit area because it is well-maintained with the purpose of the production of wood. The distinction surveys have been performed due to different management methods according to forests. The distinction survey between natural forests and artificial forests is traditionally performed via airborne remote sensing or in-situ surveys. In this study, we suggest a classification method of forest types using satellite imagery to reduce the time and cost of in-situ surveying. A classification map of natural forest and artificial forest were generated using KOMPSAT-3, 3A, 5 data by employing artificial neural network (ANN). And in order to validate the accuracy of classification, we utilized reference data from 1/5,000 stock map. As a result of the study on the classification of natural forest and plantation forest using artificial neural network, the overall accuracy of classification of learning result is 77.03% when compared with 1/5,000 stock map. It was confirmed that the acquisition time of the image and other factors such as needleleaf trees and broadleaf trees affect the distinction between artificial and natural forests using artificial neural networks.

Fire resistance prediction of slim-floor asymmetric steel beams using single hidden layer ANN models that employ multiple activation functions

  • Asteris, Panagiotis G.;Maraveas, Chrysanthos;Chountalas, Athanasios T.;Sophianopoulos, Dimitrios S.;Alam, Naveed
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.769-788
    • /
    • 2022
  • In this paper a mathematical model for the prediction of the fire resistance of slim-floor steel beams based on an Artificial Neural Network modeling procedure is presented. The artificial neural network models are trained and tested using an analytical database compiled for this purpose from analytical results based on FEM. The proposed model was selected as the optimum from a plethora of alternatives, employing different activation functions in the context of Artificial Neural Network technique. The performance of the developed model was compared against analytical results, employing several performance indices. It was found that the proposed model achieves remarkably improved predictions of the fire resistance of slim-floor steel beams. Moreover, based on the optimum developed AN model a closed-form equation for the estimation of fire resistance is derived, which can prove a useful tool for researchers and engineers, while at the same time can effectively support the teaching of this subject at an academic level.

Shear lag prediction in symmetrical laminated composite box beams using artificial neural network

  • Chandak, Rajeev;Upadhyay, Akhil;Bhargava, Pradeep
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • Presence of high degree of orthotropy enhances shear lag phenomenon in laminated composite box-beams and it persists till failure. In this paper three key parameters governing shear lag behavior of laminated composite box beams are identified and defined by simple expressions. Uniqueness of the identified key parameters is proved with the help of finite element method (FEM) based studies. In addition to this, for the sake of generalization of prediction of shear lag effect in symmetrical laminated composite box beams a feed forward back propagation neural network (BPNN) model is developed. The network is trained and tested using the data base generated by extensive FEM studies carried out for various b/D, b/tF, tF/tW and laminate configurations. An optimum network architecture has been established which can effectively learn the pattern. Computational efficiency of the developed ANN makes it suitable for use in optimum design of laminated composite box-beams.

A study on the forecast of port traffic using hybrid ARIMA-neural network model (하이브리드 ARIMA-신경망 모델을 통한 컨테이너물동량 예측에 관한 연구)

  • Shin, Chang-Hoon;Kang, Jeong-Sick;Park, Soo-Nam;Lee, Ji-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.81-88
    • /
    • 2008
  • The forecast of a container traffic has been very important for port plan and development. Generally, statistic methods, such as regression analysis, ARIMA, have been much used for traffic forecasting. Recent research activities in forecasting with artificial neural networks(ANNs) suggest that ANNs can be a promising alternative to the traditional linear methods. In this paper, a hybrid methodology that combines both ARIMA and ANN models is proposed to take advantage of the unique strength of ARIMA and ANN models in linear and nonlinear modeling. The results with port traffic data indicate that effectiveness can differ according to the characteristics of ports.

A study on the forecast of container traffic using hybrid ARIMA-neural network model (하이브리드 ARIMA-신경망 모델을 통한 항만물동량 예측에 관한 연구)

  • Shin, Chang-Hoon;Kang, Jeong-Sick;Park, Soo-Nam;Lee, Ji-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.259-260
    • /
    • 2007
  • The forecast of a container traffic has been very important for port plan and development Generally, statistic methods, such as regression analysis, ARIMA, have been much used for traffic forecasting. Recent research activities in forecasting with artificial neural networks(ANNs) suggest tint ANNs am be a promising alternative to the traditional linear methods. In this paper, a hybrid methodology that combines both ARIMA and ANN models is proposed to take advantage of the unique strength of ARIMA and ANN models in linear and nonlinear modeling. The results with port traffic data indicate tint effectiveness can differ according to the ch1racteristics of ports.

  • PDF

Developing Medium-size Corporate Credit Rating Systems by the Integration of Financial Model and Non-financial Model (재무모형과 비재무모형을 통합한 중기업 신용평가시스템의 개발)

  • Park, Cheol-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.71-83
    • /
    • 2008
  • Most researches on the corporate credit rating are generally classified into the area of bankruptcy prediction and bond rating. The studies on bankruptcy prediction have focused on improving the performance in binary classification problem, since the criterion variable is categorical, bankrupt or non-bankrupt. The other studies on bond rating have predicted the credit ratings, which was already evaluated by bond rating experts. The financial institute, however, should perform effective loan evaluation and risk management by employing the corporate credit rating model, which is able to determine the credit of corporations. Therefore, in this study we present a medium sized corporate credit rating system by using Artificial Neural Network(ANN) and Analytical Hierarchy Process(AHP). Also, we developed AHP model for credit rating using non-financial information. For the purpose of completed credit rating model, we integrated the ANN and AHP model using both financial information and non-financial information. Finally, the credit ratings of each firm are assigned by the proposed method.

Detection of Abnormal Regions Neural-Network In Chest Photofluorography (신경회로망을 이용한 흉부 X-선 간접촬영에서의 병변검출)

  • Lee, Hoo-Min;Yun, Kwang-Ho;Kim, Sang-Hoon;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2482-2484
    • /
    • 2000
  • In this paper, we have developed an automated computer aided diagnostic (CAD) scheme by using artificial neural networks(ANN) on guantitative analysis of chest photofluorography. The first ANN performs the detection of suspicious regions in a low resolution image. This was trained specifically on the problem of detecting abnormal regions digitized chest photofluorography. The second space matching method was used to distinguish between normal and abnormal regions of interest(ROI). If the ratio of the number of abnormal ROI to the total number of all ROI in a chest image was greater than a specified threshold level, the image was classified as abnormal.

  • PDF

Prediction of concrete strength using serial functional network model

  • Rajasekaran, S.;Lee, Seung-Chang
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.83-99
    • /
    • 2003
  • The aim of this paper is to develop the ISCOSTFUN (Intelligent System for Prediction of Concrete Strength by Functional Networks) in order to provide in-place strength information of the concrete to facilitate concrete from removal and scheduling for construction. For this purpose, the system is developed using Functional Network (FN) by learning functions instead of weights as in Artificial Neural Networks (ANN). In serial functional network, the functions are trained from enough input-output data and the input for one functional network is the output of the other functional network. Using ISCOSTFUN it is possible to predict early strength as well as 7-day and 28-day strength of concrete. Altogether seven functional networks are used for prediction of strength development. This study shows that ISCOSTFUN using functional network is very efficient for predicting the compressive strength development of concrete and it takes less computer time as compared to well known Back Propagation Neural Network (BPN).

The Research About Free Piston Linear Engine with Artificial Neural Network (인공 신경망을 이용한 프리피스톤 리니어 엔진의 연구)

  • AHMED, TUSHAR;HUNG, NGUYEN BA;LIM, OCKTAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.294-299
    • /
    • 2015
  • Free piston linear engine (FPLE) is a promising concept being explored in the mid-20th century. On the other hand, Arficial neural networks (ANNs) are non-linear computer algorithms and can model the behavior of complicated non-linear processes. Some researchers already studied this method to predict internal combustion engine characteristics. However, no investigation to predict the performance of a FPLE using ANN approach appears to have been published in the literature to date. In this study, the ability of an artificial neural network model, using a back propagation learning algorithm has been used to predict the in-cylinder pressure, frequency, maximum stroke length of a free piston linear engine. It is advised that, well-trained neural network models can provide fast and consistent results, making it an easy-to-use tool in preliminary studies for such thermal engineering problems.