Ecren Uzun Yaylaci;Murat Yaylaci;Mehmet Emin Ozdemir;Merve Terzi;Sevval Ozturk
Advances in nano research
/
v.15
no.2
/
pp.165-174
/
2023
The study investigated the effect of geometric structures of nano-patterned surfaces, such as peak sharpness, height, width, aspect ratio, and spacing, on mechano-bactericidal properties. Here, in silico models were developed to explain surface interactions with Escherichia coli. Numerical solutions were performed based on the finite element method and verified by the artificial neural network method. An E. coli cell adhered to the nano surface formed elastic and creep deformation models, and the cells' maximum deformation, maximum stress, and maximum strain were calculated. The results determined that the increase in peak sharpness, aspect ratio, and spacing values increased the maximum deformation, maximum stress, and maximum strain on E. coli cell. In addition, the results showed that FEM and ANN methods were in good agreement with each other. This study proved that the geometrical structures of nano-patterned surfaces have an important role in the mechano-bactericidal effect.
KIPS Transactions on Computer and Communication Systems
/
v.8
no.4
/
pp.79-86
/
2019
This paper describes a time-series data prediction based on artificial neural networks (ANN). In this study, a batch based ANN model and a stochastic ANN model have been implemented using TensorFlow libraries. Each model are evaluated by comparing training and testing errors that are measured through experiment. To train and test each model, tax dataset was used that are collected from the government website of indiana state budget agency in USA from 2001 to 2018. The dataset includes tax incomes of individual, product sales, company, and total tax incomes. The experimental results show that batch model reveals better performance than stochastic model. Using the batch scheme, we have conducted a prediction experiment. In the experiment, total taxes are predicted during next seven months, and compared with actual collected total taxes. The results shows that predicted data are almost same with the actual data.
Numerous studies have been conducted to understand the shear behavior of reinforced concrete (RC) beams since it is a complex phenomenon. The diagonal cracking strength of a RC beam is critical since it is essential for determining the minimum amount of stirrups and the contribution of concrete to the shear strength of the beam. Most of the existing equations predicting the diagonal cracking strength of RC beams are based on experimental data. A powerful computational tool for analyzing experimental data is an artificial neural network (ANN). Its advantage over conventional methods for empirical modeling is that it does not require any functional form and it can be easily updated whenever additional data is available. An ANN model was developed for predicting the diagonal cracking strength of RC slender beams without stirrups. It is shown that the performance of the ANN model over the experimental data considered in this study is better than the performances of six design code equations and twelve equations proposed by various researchers. In addition, a parametric study was conducted to study the effects of various parameters on the diagonal cracking strength of RC slender beams without stirrups upon verifying the model.
In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.
This study explores the rate of injection (ROI) and injection quantities of a solenoid-type high-pressure injector under varying conditions by integrating experimental methods with machine learning (ML) techniques. Experimental data for fuel injection were obtained using a Zeuch-based HDA Moehwald injection rate measurement system, which served as the foundation for developing a machine learning model. An artificial neural network (ANN) was employed to predict the ROI, ensuring accurate representation of injection behaviors and patterns. The present study examines the impact of ambient conditions, including chamber temperature, chamber pressure, and injection pressure, on the transient profiles of the ROI, quasi-steady ROI, and injection duration. Results indicate that increasing the injection pressure significantly increases ROI, with chamber pressure affecting its initial rising peak. However, the chamber temperature effect on ROI is minimal. The trained ANN model, incorporating three input conditions, accurately reflected experimental measurements and demonstrated expected trends and patterns. This model facilitates the prediction of various ROI profiles without the need for additional experiments, significantly reducing the cost and time required for developing injection control systems in next-generation aero-engine combustors.
A sufficient amount of data with quality is needed for training artificial neural networks (ANNs). However, developing ANN models with a small amount of data often appears in engineering fields. This paper presented an ANN model to improve prediction performance of the ammonia emission amount with 83 data. The ammonia emission rate included eleven inputs and two outputs (maximum ammonia loss, Nmax and time to reach half of Nmax, Km). Categorical input variables were transformed into multi-dimensional equal-distance variables, and 13 data were added into 66 training data using a generative adversarial network. Hyperparameters (number of layers, number of neurons, and activation function) of ANN were optimized using Gaussian process. Using 17 test data, the previous ANN model (Lim et al., 2007) showed the mean absolute error (MAE) of Km and Nmax to 0.0668 and 0.1860, respectively. The present ANN outperformed the previous model, reducing MAE by 38% and 56%.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.130-133
/
2006
본 연구에서는 진단분야에서의 시스템의 성능을 향상시키고 최적의 해를 찾고자 사례기반추론과 인공 신경망을 혼합한 시스템을 제안한다. 사례기반추론은 과거의 사례(경험)를 통해 현재의 제시된 문제를 해결하는 추론방식으로, 지식이 획득이 덜 복잡하고, 정형화되기 어려운 규칙이나 문제영역이 불분명한 분야에 효율적으로 활용되었다. 그러나 사례의 양이 방대해야 효율적인 추론을 할 수 있으며, 검색된 시간 또한 지연되는 단점이 있다. 이러한 문제를 보완하고자 본 논문에서는 인공 신경망의 학습을 통해 저장된 ANN Library를 생성하여, 사례기반추론에서의 부적절한 해를 유추하는 것을 방지하고, 효율적이고 신뢰성이 높은 해를 유추해 내는데 목적이 있다.
Martins, Francisco F.;Vasconcelos, Graca;Miranda, Tiago
Geomechanics and Engineering
/
v.15
no.1
/
pp.631-643
/
2018
The estimation of the strength and other mechanical parameters characterizing the tensile behavior of granites can play an important role in civil engineering tasks such as design, construction, rehabilitation and repair of existing structures. The purpose of this paper is to apply data mining techniques, such as multiple regression (MR), artificial neural networks (ANN) and support vector machines (SVM) to estimate the mechanical properties of granites. In a first phase, the mechanical parameters defining the complete tensile behavior are estimated based on the tensile strength. In a second phase, the estimation of the mechanical properties is carried out from different combination of the physical properties (ultrasonic pulse velocity, porosity and density). It was observed that the estimation of the mechanical properties can be optimized by combining different physical properties. Besides, it was seen that artificial neural networks and support vector machines performed better than multiple regression model.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.11
no.1
/
pp.7-11
/
1998
In this paper, a new synapse cell with nonvolatile SONOS semiconductor memory device is proposed and it's fundamental function electronically implemented SONOS NVSM has shown characteristics that the memory value, synaptic weights, can be increased or decreased incrementally. A novel SONOS synapse is used to read out the stored analog value. For the purpose of synapse implementation using SONOS NVSM, this work has investigated multiplying characteristics including weight updating characteristics and neuron output characteristics. It is concluded that SONOS synapse cell has good agreement for use as a synapse in artificial neural networks.
In this paper, damage assessment in wind-turbine towers using vibration-based artificial neural networks (ANNs) is numerically investigated. At first, a vibration-based ANNs algorithm is designed for damage detection in a wind turbine tower. The ANNs architecture consists of an input, an output, and hidden layers. Modal parameters of the wind turbine tower such as mode shapes and frequencies are utilized as the input and the output layer composes of element stiffness indices. Next, the finite element model of a real wind-turbine tower is established as the test structure. The natural frequencies and mode shapes of the test structure are computed under various damage cases of single and multiple damages to generate training patterns. Finally, the ANNs are trained using the generated training patterns and employed to detect damaged elements and severities in the test structure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.