• Title/Summary/Keyword: Artificial neural Networks (ANN)

Search Result 375, Processing Time 0.03 seconds

Data Mining using Instance Selection in Artificial Neural Networks for Bankruptcy Prediction (기업부도예측을 위한 인공신경망 모형에서의 사례선택기법에 의한 데이터 마이닝)

  • Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.1
    • /
    • pp.109-123
    • /
    • 2004
  • Corporate financial distress and bankruptcy prediction is one of the major application areas of artificial neural networks (ANNs) in finance and management. ANNs have showed high prediction performance in this area, but sometimes are confronted with inconsistent and unpredictable performance for noisy data. In addition, it may not be possible to train ANN or the training task cannot be effectively carried out without data reduction when the amount of data is so large because training the large data set needs much processing time and additional costs of collecting data. Instance selection is one of popular methods for dimensionality reduction and is directly related to data reduction. Although some researchers have addressed the need for instance selection in instance-based learning algorithms, there is little research on instance selection for ANN. This study proposes a genetic algorithm (GA) approach to instance selection in ANN for bankruptcy prediction. In this study, we use ANN supported by the GA to optimize the connection weights between layers and select relevant instances. It is expected that the globally evolved weights mitigate the well-known limitations of gradient descent algorithm of backpropagation algorithm. In addition, genetically selected instances will shorten the learning time and enhance prediction performance. This study will compare the proposed model with other major data mining techniques. Experimental results show that the GA approach is a promising method for instance selection in ANN.

  • PDF

The prediction of interest rate using artificial neural network models

  • Hong, Taeho;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.741-744
    • /
    • 1996
  • Artifical Neural Network(ANN) models were used for forecasting interest rate as a new methodology, which has proven itself successful in financial domain. This research intended to construct ANN models which can maximize the performance of prediction, regarding Corporate Bond Yield (CBY) as interest rate. Synergistic Market Analysis (SMA) was applied to the construction of models [Freedman et al.]. In this aspect, while the models which consist of only time series data for corporate bond yield were devloped, the other models generated through conjunction and reorganization of fundamental variables and market variables were developed. Every model was constructed to predict 1,6, and 12 months after and we obtained 9 ANN models for interest rate forecasting. Multi-layer perceptron networks using backpropagation algorithm showed good performance in the prediction for 1 and 6 months after.

  • PDF

ANN-based Real-Time Damage Detection Algorithm using Output-only Acceleration Signals (가속도를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Kim, Jung-Tae;Park, Jae-Hyung;Do, Han-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.43-48
    • /
    • 2007
  • In this study, an ANN-based damage detection algorithm using acceleration signals is developed for alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed for damage detection in real time. The cross-covariance of two acceleration signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained for potential loading patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.

  • PDF

Utilizing Artificial Neural Networks for Establishing Hearing-Loss Predicting Models Based on a Longitudinal Dataset and Their Implications for Managing the Hearing Conservation Program

  • Thanawat Khajonklin;Yih-Min Sun;Yue-Liang Leon Guo;Hsin-I Hsu;Chung Sik Yoon;Cheng-Yu Lin;Perng-Jy Tsai
    • Safety and Health at Work
    • /
    • v.15 no.2
    • /
    • pp.220-227
    • /
    • 2024
  • Background: Though the artificial neural network (ANN) technique has been used to predict noise-induced hearing loss (NIHL), the established prediction models have primarily relied on cross-sectional datasets, and hence, they may not comprehensively capture the chronic nature of NIHL as a disease linked to long-term noise exposure among workers. Methods: A comprehensive dataset was utilized, encompassing eight-year longitudinal personal hearing threshold levels (HTLs) as well as information on seven personal variables and two environmental variables to establish NIHL predicting models through the ANN technique. Three subdatasets were extracted from the afirementioned comprehensive dataset to assess the advantages of the present study in NIHL predictions. Results: The dataset was gathered from 170 workers employed in a steel-making industry, with a median cumulative noise exposure and HTL of 88.40 dBA-year and 19.58 dB, respectively. Utilizing the longitudinal dataset demonstrated superior prediction capabilities compared to cross-sectional datasets. Incorporating the more comprehensive dataset led to improved NIHL predictions, particularly when considering variables such as noise pattern and use of personal protective equipment. Despite fluctuations observed in the measured HTLs, the ANN predicting models consistently revealed a discernible trend. Conclusions: A consistent correlation was observed between the measured HTLs and the results obtained from the predicting models. However, it is essential to exercise caution when utilizing the model-predicted NIHLs for individual workers due to inherent personal fluctuations in HTLs. Nonetheless, these ANN models can serve as a valuable reference for the industry in effectively managing its hearing conservation program.

AERODYNAMIC DESIGN OPTIMIZATION OF UAV ROTOR BLADES USING A GENETIC ALGORITHM AND ARTIFICIAL NEURAL NETWORKS (유전 알고리즘과 인공 신경망 기법을 이용한 무인항공기 로터 블레이드 공력 최적설계)

  • Lee, H.M.;Ryu, J.K.;Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.29-36
    • /
    • 2014
  • In the present study, an aerodynamic design optimization of UAV rotor blades was conducted using a genetic algorithm(GA) coupled with computational fluid dynamics(CFD). To reduce computational cost in making databases, a function approximation was applied using artificial neural networks(ANN) based on a radial basis function network. Three dimensional Reynolds-Averaged Navier-Stokes(RANS) solver was used to solve the flow around UAV rotor blades. Design directions were specified to maximize thrust coefficient maintaining torque coefficient and minimize torque coefficient maintaining thrust coefficient. Design variables such as twist angle, thickness and chord length were adopted to perform a planform optimization. As a result of an optimization regarding to maximizing thrust coefficient, thrust coefficient was increased about 4.5% than base configuration. In case of an optimization minimizing torque coefficient, torque coefficient was decreased about 7.4% comparing with base configuration.

Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs

  • Tang, Chao-Wei;Lin, Yiching;Kuo, Shih-Fang
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.477-497
    • /
    • 2007
  • The ultrasonic pulse velocity method has been widely used to evaluate the quality of concrete and assess the structural integrity of concrete structures. But its use for predicting strength is still limited since there are many variables affecting the relationship between strength and pulse velocity of concrete. This study is focused on establishing a complicated correlation between known input data, such as pulse velocity and mixture proportions of concrete, and a certain output (compressive strength of concrete) using artificial neural networks (ANN). In addition, the results predicted by the developed multilayer perceptrons (MLP) networks are compared with those by conventional regression analysis. The result shows that the correlation between pulse velocity and compressive strength of concrete at various ages can be well established by using ANN and the accuracy of the estimates depends on the quality of the information used to train the network. Moreover, compared with the conventional approach, the proposed method gives a better prediction, both in terms of coefficients of determination and root-mean-square error.

Modeling the Relationship between Process Parameters and Bulk Density of Barium Titanates

  • Park, Sang Eun;Kim, Hong In;Kim, Jeoung Han;Reddy, N.S.
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.369-374
    • /
    • 2019
  • The properties of powder metallurgy products are related to their densities. In the present work, we demonstrate a method to apply artificial neural networks (ANNs) trained on experimental data to predict the bulk density of barium titanates. The density is modeled as a function of pressure, press rate, heating rate, sintering temperature, and soaking time using the ANN method. The model predictions with the training and testing data result in a high coefficient of correlation (R2 = 0.95 and Pearson's r = 0.97) and low average error. Moreover, a graphical user interface for the model is developed on the basis of the transformed weights of the optimally trained model. It facilitates the prediction of an infinite combination of process parameters with reasonable accuracy. Sensitivity analysis performed on the ANN model aids the identification of the impact of process parameters on the density of barium titanates.

Prognosis of aerodynamic coefficients of butterfly plan shaped tall building by surrogate modelling

  • Sanyal, Prasenjit;Banerjee, Sayantan;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.321-334
    • /
    • 2022
  • Irregularity in plan shape is very common for any type of building as it enhances better air ventilation for the inhabitants. Systematic opening at the middle of the facades makes the appearance of the building plan as a butterfly one. The primary focus of this study is to forecast the force, moment and torsional coefficient of a butterfly plan shaped tall building. Initially, Computational Fluid Dynamics (CFD) study is done on the building model based on Reynolds averaged Navier Stokes (RANS) k-epsilon turbulence model. Fifty random cases of irregularity and angle of attack (AOA) are selected, and the results from these cases are utilised for developing the surrogate models. Parametric equations are predicted for all these aerodynamic coefficients, and the training of these outcomes are also done for developing Artificial Neural Networks (ANN). After achieving the target acceptance criteria, the observed results are compared with the primary CFD data. Both parametric equations and ANN matched very well with the obtained data. The results are further utilised for discussing the effects of irregularity on the most critical wind condition.

Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches

  • Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.657-680
    • /
    • 2016
  • Reinforced concrete (RC) deep beams are structural members that predominantly fail in shear. Therefore, determining the shear strength of these types of beams is very important. The strut-and-tie method is commonly used to design deep beams, and this method has been adopted in many building codes (ACI318-14, Eurocode 2-2004, CSA A23.3-2004). In this study, the efficiency of artificial neural networks (ANNs) in predicting the shear strength of RC deep beams is investigated as a different approach to the strut-and-tie method. An ANN model was developed using experimental data for 214 normal and high-strength concrete deep beams from an existing literature database. Seven different input parameters affecting the shear strength of the RC deep beams were selected to create the ANN structure. Each parameter was arranged as an input vector and a corresponding output vector that includes the shear strength of the RC deep beam. The ANN model was trained and tested using a multi-layered back-propagation method. The most convenient ANN algorithm was determined as trainGDX. Additionally, the results in the existing literature and the accuracy of the strut-and-tie model in ACI318-14 in predicting the shear strength of the RC deep beams were investigated using the same test data. The study shows that the ANN model provides acceptable predictions of the ultimate shear strength of RC deep beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model is shown to provide more accurate predictions of the shear capacity than all the other computed methods in this study. The ACI318-14-STM method was very conservative, as expected. Moreover, the study shows that the proposed ANN model predicts the shear strengths of RC deep beams better than does the strut-and-tie model approaches.

Development of Personalized Insurance Product Recommendation Systems based on Artificial Neural Networks (인공신경망 기반의 개인 맞춤형 보험 상품 추천 시스템 개발)

  • Seo, Kwang-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.309-314
    • /
    • 2008
  • Many studies on predicting and recommending information and products have been studying to meet customers' preference. Unnecessary information should be removed to satisfy customers' needs in massive information. The some information filtering methods to remove unnecessary information have been suggested but these methods have scarcity and scalability problems. Therefore, this paper explores a personalized recommendation system based on artificial neural network (ANN) to solve these problems. The insurance product recommendation is adapted as an example to demonstrate the proposed method. The proposed recommendation system is expected to recommended a suitable and personalized insurance products for customers' satisfaction.