• 제목/요약/키워드: Artificial muscle actuator

검색결과 66건 처리시간 0.031초

Five-DOF Polymer Actuator Based on Dielectric Elastomer

  • Kwangmok Jung;Lee, Sangwon;Jongwon Kwak;Kim, Hunmo;Jaedo Nam;Jaewook Jeon;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.78.3-78
    • /
    • 2002
  • In this paper, we present a five-DOF actuator based on dielectric elastomer. The actuator is designed for generating five DOFs motions to drive a micro camera steering module and provides all the functions for controlling CCD array such as focusing, pan and tilting. Basic modeling of the actuator is performed, and simulation works and experimental verifications are conducted, too. The camera steering module includes most parts necessary for driving the actuator such as a micro-controller and DC-DC converter, etc. It can be operated with a personal computer using only communication lines without external power supply. A prototype is developed and its performance is experimentally proved. $\textbullet$ artificial muscle, EAP, actuator.

  • PDF

Effect of Viscosity on the Morphology of Electrospun Polyacrylonitrile Fibers as a Linear Actuator and Artificial Muscles

  • Kim, Ye-Na;Lee, Deuk-Yong;Lee, Myung-Hyun;Lee, Se-Jong
    • 한국세라믹학회지
    • /
    • 제43권4호
    • /
    • pp.203-206
    • /
    • 2006
  • Polyacrylonitrile (PAN) nanofibers, which are pH-sensitive and exhibit soft actuation as a linear actuator and artificial muscles, were prepared by electrospinning to investigate the effect of viscosity on the morphology of PAN fibers. Experimental results revealed that higher viscosity is critical for the formation of unbeaded nanofibers because surface tension is almost constant throughout the experiment. Uniform, smooth, and continuous fibers with diameters of about 700 nm were achieved for the 10 wt% PAN fibers at a flow rate of 0.5 mL/h and an electric field of 0.875 kV/cm.

Performance Improvement of IPMC(Ionic Polymer Metal Composites) for a Flapping Actuator

  • Lee, Soon-Gie;Park, Hoon-Cheol;Pandita Surya D.;Yoo Young-Tai
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.748-755
    • /
    • 2006
  • In this paper, a trade-off design and fabrication of IPMC(Ionic Polymer Metal Composites) as an actuator for a flapping device have been described. Experiments for the internal solvent loss of IPMCs have been conducted for various combinations of cation and solvent in order to find out the best combination of cation and solvent for minimal solvent loss and higher actuation force. From the experiments, it was found that IPMCs with heavy water as their solvent could operate longer. Relations between length/thickness and tip force of IPMCs were also quantitatively identified for the actuator design from the tip force measurement of 200, 400, 640, and $800{\mu}m$ thick IPMCs. All IPMCs thicker than $200{\mu}m$ were processed by casting $Nafion^{TM}$ solution. The shorter and thicker IPMCs tended to generate higher actuation force but lower actuation displacement. To improve surface conductivity and to minimize solvent evaporation due to electrically heated electrodes, gold was sputtered on both surfaces of the cast IPMCs by the Physical Vapor Deposition(PVD) process. For amplification of a short IPMC's small actuation displacement to a large flapping motion, a rack-and-pinion type hinge was used in the flapping device. An insect wing was attached to the IPMC flapping mechanism for its flapping test. In this test, the wing flapping device using the $800{\mu}m$ thick IPMC. could create around $10^{\circ}{\sim}85^{\circ}$ flapping angles and $0.5{\sim}15Hz$ flapping frequencies by applying $3{\sim|}4V$.

인공 근육에 응용 가능한 전기변형 불화 고분자 박막의 제작 (Fabrication of an Electrostrictive Fluorinated Terpolymer Sheet Applicable to Artificial Muscle Systems)

  • 김성진
    • 한국진공학회지
    • /
    • 제20권4호
    • /
    • pp.276-279
    • /
    • 2011
  • 약밀려남/잡아당김/급냉각의 연속적인 압출 공정을 이용하여 대면적 불화 고분자 막을 제작하였다. 제안한 방법으로 형성된 불화 고분자 박막은 $C_i=2.9\;nF/cm^2$의 전기용량밀도가 측정되었고, 1kHz에서의 ${\varepsilon}_r$=56의 높은 유전상수를 나타내었다. $1.5406{\AA}$의 파장에서 Bruker AXS X-ray 회절분석기를 통해 $18.0^{\circ}$에서 최고점을 나타내어 전기변형 성능에 적합한 ${\beta}$ 상태를 확인하였다. 본 연구는 넓은 면적의 인공근육에 응용 가능한 전기변형 불화고분자막의 새로운 박막 형성 기술로 이용될 수 있다.

고분자 구동기를 이용한 마이크로 로봇 (Micro robot using actuators based on dielectric elastomer)

  • 최혁렬;정광목;남재도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.334-337
    • /
    • 2003
  • In this paper. we introduce a novel actuation method based on dielectric elastomer. Along with basic principles of actuation using dielectric elastomer a new design of actuator is discussed. The proposed design has advantageous features in reduction in size, speed of response, ease and ruggedness of operation. Using the actuator. a three-degree-of-freedom actuator module is developed, which can provide up-down. and two rotational degree-of-freedom motion. In the application of the proposed actuation method, a micro-robot mimicking the motion of an inchworm is developed.

  • PDF

초음파 C-스캔 탐상을 이용한 경량 압전세라믹 복합재료 작동기의 피로거동과 계면변화의 관계 연구 (Experimental Evaluation of Fatigue Behavior and Interlaminar Phase in the Lightweight Piezoelectric Ceramic Composite Actuator Using the Ultrasonic C-scan Inspection)

  • 김철웅;남인창;윤광준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1332-1336
    • /
    • 2005
  • It could make the LIghtweight Piezoelectric Composite Actuator (LIPCA) damageable by the cyclic large deformation. If the progressive microvoid coalescence of LIPCA interlaminar took place, the decrease of the stiffness and the weakness of stress transmission and fiber bridging effect would make the fatigue characteristics worse suddenly. Therefore, it is required to study the variation of fatigue behavior and interlaminar condition in LIPCA under resonant frequencies. These studies such as the changeable fatigue phase and interlaminar behavior of LIPCA affected by the resonant frequencies should be carried out due to the strong anisotropy of CFRP layer. Hence, these studies are as follows. 1) The residual stresses distribution of interlaminar in LIPCA using the Classical Lamination Theory (CLT). 2) Comparative analysis of interlaminar behavior for the intact LIPCA versus LIPCA containing an artificial delamination during resonant frequency.

  • PDF

이온성 망상구조막에 기반한 전기 활성 고분자 구동기 (Electro-Active Polymer Actuator by Employing Ionic Networking Membrane of Poly (styrene-alt-maleic anhydride)-Incorporated Poly (vinylidene fluoride))

  • 여군;김상균;이선우;오일권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.714-717
    • /
    • 2007
  • In this study, a novel actuator was developed by employing the newly-synthesized ionic networking membrane (INM) of poly (styrene-alt-maleic anhydride) (PSMAn)-incorporated poly (vinylidene fluoride) (PVDF). Based on the same original membrane, various samples of INM actuator were prepared through different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performance was compared to that of the widely-used traditional Nafion actuator. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic response was observed for the newly-developed INM actuators, this was found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage.

  • PDF

Development of Face Robot Actuated by Artificial Muscle

  • Choi, H.R.;Kwak, J.W.;Chi, H.J.;Jung, K.M.;Hwang, S.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1229-1234
    • /
    • 2004
  • Face robots capable of expressing their emotional status, can be adopted as an e cient tool for friendly communication between the human and the machine. In this paper, we present a face robot actuated with arti cial muscle based on dielectric elastomer. By exploiting the properties of polymers, it is possible to actuate the covering skin, and provide human-like expressivity without employing complicated mechanisms. The robot is driven by seven types of actuator modules such as eye, eyebrow, eyelid, brow, cheek, jaw and neck module corresponding to movements of facial muscles. Although they are only part of the whole set of facial motions, our approach is su cient to generate six fundamental facial expressions such as surprise, fear, angry, disgust, sadness, and happiness. Each module communicates with the others via CAN communication protocol and according to the desired emotional expressions, the facial motions are generated by combining the motions of each actuator module. A prototype of the robot has been developed and several experiments have been conducted to validate its feasibility.

  • PDF

탄소나노튜브 액츄에이터의 이론적 모델링 (Analytical Modeling of Carbon Nanotube Actuators)

  • 염영일;박철휴
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1006-1011
    • /
    • 2004
  • Carbon nanotubes have outstanding properties which make them useful for a number of high-technology applications. Especially, single-walled carbon nanotube (SWNT), working under physical conditions (in aqueous solution) and converting electrical energy into mechanical energy directly, can be a good substitute for artificial muscle. The carbon nanotube structure simulated in this paper is an isotropic cantilever type with an adhesive tape which is sandwiched between two SWNTs. For predicting the geometrical and physical parameters such as deflection, slope, bending moment and induced force with various applied voltages, the analytical model for a 3 layer bimorph nanotube actuator is developed by applying Euler-Bernoulli beam theory. The governing equation and boundary conditions are derived from energy Principles. Also, the brief history of carbon nonotube is overviewed and its properties are compared with other functional materials. Moreover, an electro-mechanical coupling coefficient of the carbon nanotube actuator is discussed to identify the electro-mechanical energy efficiency.