• Title/Summary/Keyword: Artificial intelligence program

Search Result 332, Processing Time 0.026 seconds

A Development and Application of the Teaching and Learning Model of Artificial Intelligence Education for Elementary Students (초등학생의 인공지능 교육을 위한 교수 학습 모델 개발 및 적용)

  • Kim, Kapsu;Park, Youngki
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.1
    • /
    • pp.139-149
    • /
    • 2017
  • Artificial intelligence education is very important in the 21st century knowledge information society. Even if it is very important to understand artificial intelligence and practice computer programming in computer education in the fourth industrial revolution, but there is no teaching and learning model to understand artificial intelligence and computer programming education. In this paper, the proposed model consists of problem understanding step, data organizing step, artificial intelligence model setting step, programming step, and report writing step. At the program step, students can choose to copy, transform, create, and challenge steps to their level. In this study, the validity of the model was proved by the Delphi evaluation of elementary school teachers. The results of this study provide a good opportunity for elementary school students to practice artificial intelligence programs.

Development and Validation of Artificial Intelligence Education on the Environmental Education Based on Unplugged (언플러그드 기반 환경교육 주제 인공지능교육 프로그램 개발 및 타당성 검증)

  • Song, Jeongbeom
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.847-857
    • /
    • 2021
  • Recently, domestic schools are increasingly interested in environmental education related to COVID-19 and the severe climate crisis, as well as artificial intelligence education related to the 4th industrial revolution that is rapidly approaching us. In particular, AI education is highly likely to be applied to 5th to 6th graders of elementary school, so measures related to connection with 1st to 4th graders are needed. There are many students who are not proficient in computers in the lower grades of elementary school, so there may be many restrictions in using the currently used teaching aids. Therefore, this study tried to develop an artificial intelligence education program for the lower grades of elementary school to secure the linkage of artificial intelligence education. The theme of the program was developed based on the topic of environmental education, which has recently increased in interest. As for the educational method, considering the developmental stage of the lower grades of elementary school, the STEAM education method was used, which was fused with various subjects and unplugged using play and games without a computer. of the program. For validity verification, Lawshe (1975)'s content validity ratio (CVR) calculation formula was used. The verification results were analyzed to be suitable for the purpose of development of all programs. In the future, it is necessary to measure the degree of effectiveness by applying the program proposed in this study to the lower grades of elementary school.

[Reivew]Prediction of Cervical Cancer Risk from Taking Hormone Contraceptivese

  • Su jeong RU;Kyung-A KIM;Myung-Ae CHUNG;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.25-29
    • /
    • 2024
  • In this study, research was conducted to predict the probability of cervical cancer occurrence associated with the use of hormonal contraceptives. Cervical cancer is influenced by various environmental factors; however, the human papillomavirus (HPV) is detected in 99% of cases, making it the primary attributed cause. Additionally, although cervical cancer ranks 10th in overall female cancer incidence, it is nearly 100% preventable among known cancers. Early-stage cervical cancer typically presents no symptoms but can be detected early through regular screening. Therefore, routine tests, including cytology, should be conducted annually, as early detection significantly improves the chances of successful treatment. Thus, we employed artificial intelligence technology to forecast the likelihood of developing cervical cancer. We utilized the logistic regression algorithm, a predictive model, through Microsoft Azure. The classification model yielded an accuracy of 80.8%, a precision of 80.2%, a recall rate of 99.0%, and an F1 score of 88.6%. These results indicate that the use of hormonal contraceptives is associated with an increased risk of cervical cancer. Further development of the artificial intelligence program, as studied here, holds promise for reducing mortality rates attributable to cervical cancer.

Auto-Positioning of Patient in X-ray Diagnostic Imaging (진단 엑스선 영상에서 환자 위치잡이의 자동화)

  • Yang, Won Seok;Son, Jung Min;Kwon, Su Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.793-799
    • /
    • 2018
  • As interest in artificial intelligence has increased, artificial intelligence has been actively studied in the medical field. In Korea, artificial intelligence has been applied to medical imaging devices such as X-ray imaging, Computer Tomography and Magnetic Resonance Imaging and artificial intelligence capable of acquiring radiation images of patients without radiologists in the future Medical devices are expected to be invented. This study was an initial study on the automation of patient positioning in X - ray imaging. We used x-ray equipment and human phantoms to evaluate the positioning. The program used Visual Studio 2010 MFC and the image was in the size $1450{\times}1814$. The pixel values were converted to contrasts with values of 0 to 255 that can be visually recognized and output to the monitor. We developed a procedure algorithm program that predicts the angle of the output image through three pixel coordinate values and induces the patient to perform correct positioning according to the voice guidance according to the angle. In the next study, we will study the artificial intelligence to grasp the structure itself and calculate the angle, rather than conveying the reference of coordinates to artificial intelligence. In the future, it is expected that it will be helpful in the study of artificial intelligence from shooting to positioning through the automation of positioning.

Analysis and Design of Arts and Culture Content Creation Tool powered by Artificial Intelligence (인공지능 기반 문화예술 콘텐츠 창작 기술 분석 및 도구 설계)

  • Shin, Choonsung;Jeong, Hieyong
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.489-499
    • /
    • 2021
  • This paper proposes an arts and culture content creation tool powered by artificial intelligence. With the recent advances in technologies including artificial intelligence, there are active research activities on creating art and culture contents. However, it is still difficult and cumbersome for those who are not familiar with programming and artificial intelligence. In order to deal with the content creation with new technologies, we analyze related creation tools, services and technologies that process with raw visual and audio data, generate new media contents and visualize intermediate results. We then extract key requirements for a future creation tool for creators who are not familiar with programming and artificial intelligence. We finally introduce an intuitive and integrated content creation tool for end-users. We hope that this tool will allow creators to intuitively and creatively generate new media arts and culture contents based on not only understanding given data but also adopting new technologies.

Establishment Plan on Personalized Training Model for Fostering AI Integrated Human Resource: Focusing on the Ministry of Employment and Labor's STEP as a Public Education and Training Platform (AI 융합형 인재양성을 위한 학습자 맞춤형 훈련프로그램 모델 수립 방안: 고용노동부의 STEP을 중심으로)

  • Rim, Kyung-Hwa;Shin, Jung-min;Lee, Doo-wan
    • Journal of Practical Engineering Education
    • /
    • v.12 no.2
    • /
    • pp.339-351
    • /
    • 2020
  • In response to changes in Fourth Industrial Revolution in recent years, the field of education has focused on development of the human resources in the areas of artificial intelligence (AI: Artificial Intelligence) and industrial robot. Due to particular interest in these areas, the importance of developing integrated human resources equipped with artificial intelligence technology is emphasized in higher education and vocational competence development. In regards to rapid changing environment, this study created a program "Fostering personalized AI integrated human resource" and established an operational model correspond to latest personalized education trend. The established operational model was conducted twice using Delphi survey with experts in AI and innovative education in order to verify the suitability of program's basic structure, training process, and the sub-components of the operational strategy. The final training model was applied to the online vocational training platform (STEP) and a plan was proposed to establish a personalized training model to foster an AI integrated competent individual.

Robust 3D Object Detection through Distance based Adaptive Thresholding (거리 기반 적응형 임계값을 활용한 강건한 3차원 물체 탐지)

  • Eunho Lee;Minwoo Jung;Jongho Kim;Kyongsu Yi;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.106-116
    • /
    • 2024
  • Ensuring robust 3D object detection is a core challenge for autonomous driving systems operating in urban environments. To tackle this issue, various 3D representation, including point cloud, voxels, and pillars, have been widely adopted, making use of LiDAR, Camera, and Radar sensors. These representations improved 3D object detection performance, but real-world urban scenarios with unexpected situations can still lead to numerous false positives, posing a challenge for robust 3D models. This paper presents a post-processing algorithm that dynamically adjusts object detection thresholds based on the distance from the ego-vehicle. While conventional perception algorithms typically employ a single threshold in post-processing, 3D models perform well in detecting nearby objects but may exhibit suboptimal performance for distant ones. The proposed algorithm tackles this issue by employing adaptive thresholds based on the distance from the ego-vehicle, minimizing false negatives and reducing false positives in the 3D model. The results show performance enhancements in the 3D model across a range of scenarios, encompassing not only typical urban road conditions but also scenarios involving adverse weather conditions.

The Effect of a Fine Dust Environmental Education Program Using Artificial Intelligence-Based Tools on Environmental Sensitivity and Self-Effectiveness of Elementary School Students (인공지능 기반 도구를 활용한 미세먼지 환경교육 프로그램이 초등학생의 환경감수성과 자기효능감에 미치는 영향)

  • Choi, Il-hoon;So, Keumhyun
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.3
    • /
    • pp.468-479
    • /
    • 2022
  • In this study, we developed an environmental education program for fine dust using artificial intelligence-based tools. We applied this program to elementary school students to investigate its effect on environmental sensitivity and self-efficacy. The study was conducted on 29 sixth-grade elementary school students. The analysis of the pre- and post-tests gave the following results. First, the fine dust environmental education program using artificial intelligence-based tools was effective in improving the environmental sensitivity of elementary school students. Second, it had a positive effect on improving the self-efficacy of elementary school students, and third, it had a positive effect on the elementary school students' perception of the environment. After applying the program, students became more interested in the environment and fine dust. Additionally, they had a sense of environmental protection practice in connection with their daily lives. As such, it is concluded that the fine dust environmental education program using artificial intelligence-based tools had a positive effect on the environmental sensitivity and self-efficacy of elementary school students.

Development and Application of Statistical Programs Based on Data and Artificial Intelligence Prediction Model to Improve Statistical Literacy of Elementary School Students (초등학생의 통계적 소양 신장을 위한 데이터와 인공지능 예측모델 기반의 통계프로그램 개발 및 적용)

  • Kim, Yunha;Chang, Hyewon
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.717-736
    • /
    • 2023
  • The purpose of this study is to develop a statistical program using data and artificial intelligence prediction models and apply it to one class in the sixth grade of elementary school to see if it is effective in improving students' statistical literacy. Based on the analysis of problems in today's elementary school statistical education, a total of 15 sessions of the program was developed to encourage elementary students to experience the entire process of statistical problem solving and to make correct predictions by incorporating data, the core in the era of the Fourth Industrial Revolution into AI education. The biggest features of this program are the recognition of the importance of data, which are the key elements of artificial intelligence education, and the collection and analysis activities that take into account context using real-life data provided by public data platforms. In addition, since it consists of activities to predict the future based on data by using engineering tools such as entry and easy statistics, and creating an artificial intelligence prediction model, it is composed of a program focused on the ability to develop communication skills, information processing capabilities, and critical thinking skills. As a result of applying this program, not only did the program positively affect the statistical literacy of elementary school students, but we also observed students' interest, critical inquiry, and mathematical communication in the entire process of statistical problem solving.

A Study on the production of Music Content Using Artificial Intelligence Composition Program (인공지능 작곡 프로그램을 활용한 음악 콘텐츠 제작 연구)

  • Park, Dahae
    • Trans-
    • /
    • v.13
    • /
    • pp.35-58
    • /
    • 2022
  • This study predicts the paradigm shift that the development of artificial intelligence technology will bring to the production of music content, and suggests that works created through collaboration between artificial intelligence and humans can have artistic value as finished products. Anyone can easily produce music content using artificial intelligence composition programs, and it has become an opportunity to inspire artists with various attempts and creative ideas. Although artificial intelligence technology provides convenience in human life and benefits a lot in the efficient aspect of work, it is difficult to escape the perception of data-based pattern music in the art field so far. Pattern music with many quantitative elements is not recognized as a complete creation due to the absence of abstract symbolism or meaning pursued by art. However, it predicts that if qualitative elements such as emotions and creativity are given to artificial intelligence music through human collaboration, it can be recognized as a complete work of art. The development of artificial intelligence technology increases access to culture and art from the public, and it can be expected that anyone can enjoy it as well as aesthetic experiences. In addition, various contents can be produced by improving individual digital literacy, and it is an opportunity to share and communicate with others. As such, artificial intelligence technology serves as a medium connecting the public with culture and art, and is narrowing the gap between humans and technology through art activities. Along with this cultural phenomenon, we predict the possibility of research on the production of artificial intelligence music contents with artistic value and the development of various convergence and complex art contents using artificial intelligence technology in the future.