• Title/Summary/Keyword: Artificial intelligence program

Search Result 332, Processing Time 0.032 seconds

Estimation of residual stress in dissimilar metals welding using deep fuzzy neural networks with rule-dropout

  • Ji Hun Park;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4149-4157
    • /
    • 2024
  • Welding processes are used to connect several components in nuclear power plants. These welding processes can induce residual stress in welding joints, which has been identified as a significant factor in primary water stress corrosion cracking. Consequently, the assessment of welding residual stress plays a crucial role in determining the structural integrity of welded joints. In this study, a deep fuzzy neural networks (DFNN) with a rule-dropout method, which is an artificial intelligence (AI) method, was used to predict the residual stress of dissimilar metal welding. ABAQUS, a finite element analysis program, was used as the data collection tool to develop the AI model, and 6300 data instances were collected under 150 analysis conditions. A rule-dropout method and genetic algorithm were used to optimize the estimation performance of the DFNN model. DFNN with the rule-dropout model was compared to a deep neural network method, known as a general deep learning method, to evaluate the estimation performance of DFNN. In addition, a fuzzy neural network method and a cascaded support vector regression method conducted in previous studies were compared. Consequently, the estimation performance of the DFNN with the rule-dropout model was better than those of the comparison methods. The welding residual stress estimation results of this study are expected to contribute to the evaluation of the structural integrity of welded joints.

Study on the Application of Big Data Mining to Activate Physical Distribution Cooperation : Focusing AHP Technique (물류공동화 활성화를 위한 빅데이터 마이닝 적용 연구 : AHP 기법을 중심으로)

  • Young-Hyun Pak;Jae-Ho Lee;Kyeong-Woo Kim
    • Korea Trade Review
    • /
    • v.46 no.5
    • /
    • pp.65-81
    • /
    • 2021
  • The technological development in the era of the 4th industrial revolution is changing the paradigm of various industries. Various technologies such as big data, cloud, artificial intelligence, virtual reality, and the Internet of Things are used, creating synergy effects with existing industries, creating radical development and value creation. Among them, the logistics sector has been greatly influenced by quantitative data from the past and has been continuously accumulating and managing data, so it is highly likely to be linked with big data analysis and has a high utilization effect. The modern advanced technology has developed together with the data mining technology to discover hidden patterns and new correlations in such big data, and through this, meaningful results are being derived. Therefore, data mining occupies an important part in big data analysis, and this study tried to analyze data mining techniques that can contribute to the logistics field and common logistics using these data mining technologies. Therefore, by using the AHP technique, it was attempted to derive priorities for each type of efficient data mining for logisticalization, and R program and R Studio were used as tools to analyze this. Criteria of AHP method set association analysis, cluster analysis, decision tree method, artificial neural network method, web mining, and opinion mining. For the alternatives, common transport and delivery, common logistics center, common logistics information system, and common logistics partnership were set as factors.

Application of Machine Learning to Predict Weight Loss in Overweight, and Obese Patients on Korean Medicine Weight Management Program (한의 체중 조절 프로그램에 참여한 과체중, 비만 환자에서의 머신러닝 기법을 적용한 체중 감량 예측 연구)

  • Kim, Eunjoo;Park, Young-Bae;Choi, Kahye;Lim, Young-Woo;Ok, Ji-Myung;Noh, Eun-Young;Song, Tae Min;Kang, Jihoon;Lee, Hyangsook;Kim, Seo-Young
    • The Journal of Korean Medicine
    • /
    • v.41 no.2
    • /
    • pp.58-79
    • /
    • 2020
  • Objectives: The purpose of this study is to predict the weight loss by applying machine learning using real-world clinical data from overweight and obese adults on weight loss program in 4 Korean Medicine obesity clinics. Methods: From January, 2017 to May, 2019, we collected data from overweight and obese adults (BMI≥23 kg/m2) who registered for a 3-month Gamitaeeumjowi-tang prescription program. Predictive analysis was conducted at the time of three prescriptions, and the expected reduced rate and reduced weight at the next order of prescription were predicted as binary classification (classification benchmark: highest quartile, median, lowest quartile). For the median, further analysis was conducted after using the variable selection method. The data set for each analysis was 25,988 in the first, 6,304 in the second, and 833 in the third. 5-fold cross validation was used to prevent overfitting. Results: Prediction accuracy was increased from 1st to 2nd and 3rd analysis. After selecting the variables based on the median, artificial neural network showed the highest accuracy in 1st (54.69%), 2nd (73.52%), and 3rd (81.88%) prediction analysis based on reduced rate. The prediction performance was additionally confirmed through AUC, Random Forest showed the highest in 1st (0.640), 2nd (0.816), and 3rd (0.939) prediction analysis based on reduced weight. Conclusions: The prediction of weight loss by applying machine learning showed that the accuracy was improved by using the initial weight loss information. There is a possibility that it can be used to screen patients who need intensive intervention when expected weight loss is low.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

The Development of Software Teaching-Learning Model based on Machine Learning Platform (머신러닝 플랫폼을 활용한 소프트웨어 교수-학습 모형 개발)

  • Park, Daeryoon;Ahn, Joongmin;Jang, Junhyeok;Yu, Wonjin;Kim, Wooyeol;Bae, Youngkwon;Yoo, Inhwan
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • The society we are living in has being changed to the age of the intelligent information society after passing through the knowledge-based information society in the early 21st century. In this study, we have developed the instructional model for software education based on the machine learning which is a field of artificial intelligence(AI) to enhance the core competencies of learners required in the intelligent information society. This model is focusing on enhancing the core competencies through the process of problem-solving as well as reducing the burden of learning about AI itself. The specific stages of the developed model are consisted of seven levels which are 'Problem Recognition and Analysis', 'Data Collection', 'Data Processing and Feature Extraction', 'ML Model Training and Evaluation', 'ML Programming', 'Application and Problem Solving', and 'Share and Feedback'. As a result of applying the developed model in this study, we were able to observe the positive response about learning from the students and parents. We hope that this research could suggest the future direction of not only the instructional design but also operation of software education program based on machine learning.

Advances, Limitations, and Future Applications of Aerospace and Geospatial Technologies for Apple IPM (사과 IPM을 위한 항공 및 지리정보 기술의 진보, 제한 및 미래 응용)

  • Park, Yong-Lak;Cho, Jum Rae;Choi, Kyung-Hee;Kim, Hyun Ran;Kim, Ji Won;Kim, Se Jin;Lee, Dong-Hyuk;Park, Chang-Gyu;Cho, Young Sik
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.135-143
    • /
    • 2021
  • Aerospace and geospatial technologies have become more accessible by researchers and agricultural practitioners, and these technologies can play a pivotal role in transforming current pest management practices in agriculture and forestry. During the past 20 years, technologies including satellites, manned and unmanned aircraft, spectral sensors, information systems, and autonomous field equipment, have been used to detect pests and apply control measures site-specifically. Despite the availability of aerospace and geospatial technologies, along with big-data-driven artificial intelligence, applications of such technologies to apple IPM have not been realized yet. Using a case study conducted at the Korea Apple Research Institute, this article discusses the advances and limitations of current aerospace and geospatial technologies that can be used for improving apple IPM.

An Analysis of Arts Management-Related Studies' Trend in Korea using Topic Modeling and Semantic Network Analysis (토픽모델링과 의미연결망분석을 활용한 한국 예술경영 연구의 동향 변화 - 1988년부터 2017년까지 국내 학술논문 분석을 중심으로 -)

  • Hwang, SeoI;Park, Yang Woo
    • Korean Association of Arts Management
    • /
    • no.50
    • /
    • pp.5-31
    • /
    • 2019
  • The main purpose of this study was to use Deep Learning based Topic Modeling and Semantic Network Analysis to examine research trend of arts management-related papers in korea. For this purpose, research subjects such as 'The Journal of Cultural Policy', 'The Journal of Cultural Economics', 'The Journal of Culture Industry', 'The Journal of Arts Management', and 'The Journal of Human Content', which are the registered journal of the National Research Foundation of Korea directly or indirectly related to arts management field. From 1988 to 2017, a total of 2,110 domestic journals' signature, abstract, and keyword were analyzed. We tried Big Data analysis such as Topic Modeling and Semantic Network Analysis to examine changes in trends in arts management. The analysis program used open software R and standard statistical software SPSS. Based on the results of the analysis, the implications and limitations of the study and suggestions for future research were discussed. And the potential for development of convergent research such as Arts & Artificial Intelligence and Arts & Big Data.

The Effect of Medical Service Design Thinking Teaching-learning on Empathic Problem Solving Ability: Convergence Analysis of Structured and Unstructured Data (의료서비스 디자인싱킹 교육의 공감적 문제해결능력 향상 효과: 정형 및 비정형 데이터 융복합 분석 중심으로)

  • Yoo, Jin-Yeong
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.311-321
    • /
    • 2020
  • The purpose of the study is to verify the effectiveness the Freshman Preliminary Health Administrators(FPHA)' Empathic Problem Solving Ability(EPSA) through the application of Medical Service Design Thinking(MSDT) conducted by undergraduate school of SNS hospital marketing education. The pre-post questionnaire survey was conducted on 39 students in the freshman year of the Department of Health Administration after applying MSDT for 15 weeks from September to December, 2019 at a college in Daegu. MSDT was positive influenced on the improvement of Empathic Imagine, Empathic interest, Empathic awakening of the FPHA' EPSA. In the analysis of key common words, the use of neutral and negative words was low, while the use of positive words was high. In order to systematically equip Empathic problem solving job competency in the age of artificial intelligence, it is meaningful to develop a program for the freshmen curriculum and to conduct a analysis of the structured and unstructured data to verify its effectiveness. Additional program development research is needed for the application of theoretical subjects.

Security Threats and Scenarios using Drones on the Battlefield (전장에서 드론을 활용한 보안 위협과 시나리오)

  • Park, Keun-Seog;Cheon, Sang-pil;Kim, Seong-Pyo;Eom, Jung-ho
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.73-79
    • /
    • 2018
  • Since 1910s, the drones were mainly used for military purposes for reconnaissance and attack targets, but they are now being used in various fields such as disaster prevention, exploration, broadcasting, and surveillance of risk areas. As drones are widely used from military to civilian field, hacking into the drones such as radio disturbance, GPS spoofing, hijacking, etc. targeting drones has begun to occur. Recently, the use of drones in hacking into wireless network has been reported. If the artificial intelligence technology is applied to the drones in the military, hacking into unmanned combat system using drones will occur. In addition, a drone with a hacking program may be able to relay a hacking program to the hacking drone located far away, just as a drone serves as a wireless communication station. And the drones will be equipped with a portable GPS jamming device, which will enable signal disturbance to unmanned combat systems. In this paper, we propose security threats and the anticipated hacking scenarios using the drones on the battlespace to know the seriousness of the security threats by hacking drones and prepare for future cyberspace.

  • PDF

A Study on the Design of Immersed Augmented Reality Education Models (몰입형 증강현실 교육 모델 설계에 관한 연구)

  • Tae, Hyo-Sik
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.4
    • /
    • pp.23-28
    • /
    • 2021
  • Through the 4th industrial revolution, it is rapidly developing in various fields such as artificial intelligence, AR/VR, and big data, and software is at the center. In the field of education as well, the importance of integrated education to support the development of technology is being emphasized, and in order to compete in software technology, securing human resources for software development should be prioritize in domestic. However, unlike the hardware-centric society of the past, the role of software technology human resources is very important, and the reality is that they are discharging human resources that are far from the human resources image that companies need. In this paper, present an immersed education model for training AR software professionals, and based on this, propose an evaluation index that can grasp the quality of the program of the immersed AR education model. Through the AR education model, it is expected that the weaknesses and strengths of the model can be identified, and it can contribute to setting the direction for improvement of the education program.