• Title/Summary/Keyword: Artificial intelligence program

Search Result 332, Processing Time 0.026 seconds

On the application of artificial intelligence in acute myeloid leukemia therapy

  • Meng, Jie;Zhong, Ruilan;Wu, Zhiqiang;Dong, Min
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.175-186
    • /
    • 2022
  • This study is a randomized pretest-posttest design that aims to investigate the effect of early entrepreneurship education on cognitive and non- early entrepreneurship education, non-cognitive skills, creativity, self-efficacy, Bizworld cognitive skills of male sixth-grade primary school students. A total of 45 students were selected by multi-stage random sampling method and were assigned randomly to experimental, active-control and control groups. The experimental group received entrepreneurship education based on the Bizworld entrepreneurship program. The results indicate that early entrepreneurship education had an effect on non-cognitive skills (such as risk taking propensity, creativity, self-efficacy, persistence and need for achievement. It seems that early entrepreneurship education is a proper strategy to develop children's non-cognitive skills in late years of primary school. These skills will affect children's individual, educational, social and occupational future and can have long term benefits for students, families and society.

Development of Machine Learning Online Education Program for Disadvantaged Informatics Gifted Students (소외계층 초등 정보영재학생을 위한 머신러닝 온라인 교육 프로그램 개발)

  • Kim, Seong-Won;Kim, Jiseon;Ryu, Jiyoung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.633-634
    • /
    • 2020
  • 본 논문에서는 소외계층 초등정보영재를 위한 온라인 머신러닝 교육 프로그램을 개발하였다. 교육 프로그램은 초등정보영재 전문가가 개발하였으며, 인공지능 교육 전문가가 검증하였다. 교육 프로그램은 15차시로 구성하였으며, 인공지능에 대한 이해, 데이터 수집 및 표현, 모델 선택, 훈련, 평가, 실생활 사례 제작, 예측으로 내용을 구성하였다. 교육 프로그램에서 학습 모형은 이재호와 홍창의(2009)의 문제 중심형 e-PBL 학습 모형을 본 연구에 맞게 수정하여 활용하였다. 향후 연구에서는 개발한 교육 프로그램을 소외계층 초등 정보영재에 적용하고, 교육 프로그램을 통한 소외계층 초등정보 영재의 변화를 분석하고자 한다.

  • PDF

Development of Artificial Intelligence Educational program for Elementary students Based on Productive Failure (생산적 실패 기반 초등학교 인공지능 교육 프로그램 개발)

  • Dagyeom Lee;Youngjun Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.217-218
    • /
    • 2023
  • 인공지능은 디지털 대전환 시대의 핵심적인 기술로 사회 전반에 변화를 주도하였다. 우리나라는 인공지능을 이해하고 이를 활용하는 역량을 길러주기 위해 전 국민을 대상으로 교육을 진행하고 있다. 그러나 초등학생 대상 인공지능 교육 프로그램은 체험 및 놀이 실습으로 한정되어 교육적 효과에 한계가 있다. 그러므로 본 연구에서는 생산적 실패를 활용하여 인공지능에 대한 개념적 이해 및 실생활 전이를 촉진하는 교육 프로그램을 개발하였다. 연구 대상은 초등학교 5~6학년이며 2022 개정 교육과정에서 강조하는 자기 주도적 학습 역량과 실생활 연계 교육을 반영하여 설계한 6차시 분량의 프로그램이다. 본 연구에서 개발한 교육 프로그램은 향후 타당성 및 신뢰도 검증을 거쳐 현장에 적용하는 후속 연구로 이어질 것이다.

  • PDF

Design of a MOT model based on Heatmap Detection and Transformer to improve object tracking performance (객체 추적 성능향상을 위한 Heatmap Detection 및 Transformer 기반의 MOT 모델 설계)

  • Hyun-Sung Yang;Chun-Bo Sim;Se-Hoon Jung
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.461-463
    • /
    • 2023
  • 본 연구는 실시간 MOT(Multiple-Object-Tracking)의 성능을 향상시키기 위해 다양한 기법을 적용한 MOT 모델을 설계한다. 연구에서 사용하는 Backbone 모델은 TBD(Tracking-by-Detection) 기반의 Tracking 모델을 사용한다. Heatmap Detection을 통해 객체를 검출하고 Transformer 기반의 Feature를 연결하여 Tracking 한다. 제안하는 방법은 Anchor 기반의 Detection의 장시간 문제와 추적 객체 정보 전달손실을 감소하여 실시간 객체 추적에 도움이 될 것으로 사료된다.

Pre-service Teachers' Education Needs for AI-Based Education Competency

  • Mingyeong JANG;Hyeon Woo LEE
    • Educational Technology International
    • /
    • v.24 no.2
    • /
    • pp.143-168
    • /
    • 2023
  • This study aims to analyze the perceptions and educational needs of pre-service teachers for the use of Artificial Intelligence (AI) in education. To this end, we collected survey data from 25 undergraduate students who were enrolled in a teacher education college in Seoul. The purpose of the survey was to measure the importance and current performance for instructional AI use based on the technological, pedagogical, and content knowledge (TPACK) framework, and to explore the priority of educational needs using Borich's needs analysis and the Locus for Focus model. The results of the study confirmed that Ethics and TPK competencies are prioritized. Additionally, the results indicated a high demand for practical knowledge that can be implemented in the practice of education. Based on the results, it is necessary to develop a teacher education program that focuses on ethical aspects and teaching strategy competencies in AI-based education.

Design of Tracking By Detection Model Using Similarity Comparison Module (유사도 비교 모듈을 이용한 Tracking By Detection 모델 설계)

  • Hyun-Sung Yang;Se-Hoon Jung;Chun-Bo Sim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.509-511
    • /
    • 2023
  • 현대 컴퓨터 비전 분야에서는 객체 추적이 중요한 연구 주제 중 하나다. 기존 Tracking By Detection 방식은 실시간 추적 속도와 Tracklet을 유지할 수 있는 정보 전달의 한계를 가지고 있다. 본 연구에서는 유사도 비교 모듈을 기반으로 Tracking By Detection 모델을 설계하고자 한다. 탐지 모델은 Anchor를 사용하지 않는 CenterNet을 사용하고 탐지된 값에 유사도 비교 알고리즘을 적용하여 객체 탐지와 객체 추적을 동시에 수행하는 모델을 제안한다. 제안하는 방법은 Occlusion으로 인한 객체 정보 손실을 완화하고, 새로운 객체 및 장애물에 대해 강건할 것으로 사료된다.

Meta-Analysis of Cognitive and Affective Effects of Arduino-Based Educational Programs

  • Bong Seok Jang
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.153-158
    • /
    • 2024
  • This study aims to summarize the effects of Arduino-based educational programs through a meta-analysis. Eleven eligible primary studies were obtained through a systematic literature review and coded accordingly. The results are as follows: The meta-analysis revealed that the overall effect size for all the studies was 0.518. Analysis of the moderator variables indicated statistically significant differences between them. Regarding the learning domains, the results were ranked in descending order of the cognitive and affective domains. Within the cognitive domain, the effect sizes were ranked in descending order as follows: logical thinking, content knowledge, convergence competency, self-efficacy, computational thinking, and creative problem-solving skills. In terms of subject areas, the descending order of effect sizes was agriculture, STEAM, environmental science, practical arts, artificial intelligence, informatics, and computers. Regarding school level, the results were ranked in the following descending order: college, elementary school, middle school, and high school.

Utilization of Satellite Technologies for Agriculture

  • Ju-Kyung Yu;Jinhyun Ahn;Gyung Deok Han;Ho-Min Kang;Hyun Jo;Yong Suk Chung
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.547-552
    • /
    • 2024
  • Satellite technology has emerged as a powerful tool in modern agriculture, offering capabilities for Earth observation, land-use pattern analysis, crop productivity assessment, and natural disaster prevention. This mini-review provides a concise overview of the applications and benefits of satellite technologies in agriculture. It discusses how satellite imagery enables the monitoring of crop health, identification of land-use patterns, evaluation of crop productivity, and mitigation of natural disasters. Farmers and policymakers can make informed decisions to optimize agricultural practices, enhance food security, and promote sustainable agriculture by leveraging satellite data. Integrating satellite technology with other advancements, such as artificial intelligence and precision farming techniques, holds promise for further revolutionizing the agricultural sector. Overall, satellite technology has immense potential for improving agricultural efficiency, resilience, and sustainability in the face of evolving environmental challenges.

Prediction of small-scale leak flow rate in LOCA situations using bidirectional GRU

  • Hye Seon Jo;Sang Hyun Lee;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3594-3601
    • /
    • 2024
  • It is difficult to detect a small-scale leakage in a nuclear power plant (NPP) quickly and take appropriate action. Delaying these procedures can have adverse effects on NPPs. In this paper, we propose leak flow rate prediction using the bidirectional gated recurrent unit (Bi-GRU) method to detect leakage quickly and accurately in small-scale leakage situations because large-scale leak rates are known to be predicted accurately. The data were acquired by simulating small loss-of-coolant accidents (LOCA) or small-scale leakage situations using the modular accident analysis program (MAAP) code. In addition, to improve prediction performance, data were collected by distinguishing the break sizes in more detail. In addition, the prediction accuracy was improved by performing both LOCA diagnosis and leak flow rate prediction in small LOCA situations. The prediction model developed using the Bi-GRU showed a superior prediction performance compared with other artificial intelligence methods. Accordingly, the accurate and effective prediction model for small-scale leakage situations proposed herein is expected to support operators in decision-making and taking actions.

Structural features and Diffusion Patterns of Gartner Hype Cycle for Artificial Intelligence using Social Network analysis (인공지능 기술에 관한 가트너 하이프사이클의 네트워크 집단구조 특성 및 확산패턴에 관한 연구)

  • Shin, Sunah;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.107-129
    • /
    • 2022
  • It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.). In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is 'Is there a pattern of diffusion at each stage of the hype cycle?'. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage. For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed. As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups. In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.