This study is a randomized pretest-posttest design that aims to investigate the effect of early entrepreneurship education on cognitive and non- early entrepreneurship education, non-cognitive skills, creativity, self-efficacy, Bizworld cognitive skills of male sixth-grade primary school students. A total of 45 students were selected by multi-stage random sampling method and were assigned randomly to experimental, active-control and control groups. The experimental group received entrepreneurship education based on the Bizworld entrepreneurship program. The results indicate that early entrepreneurship education had an effect on non-cognitive skills (such as risk taking propensity, creativity, self-efficacy, persistence and need for achievement. It seems that early entrepreneurship education is a proper strategy to develop children's non-cognitive skills in late years of primary school. These skills will affect children's individual, educational, social and occupational future and can have long term benefits for students, families and society.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.633-634
/
2020
본 논문에서는 소외계층 초등정보영재를 위한 온라인 머신러닝 교육 프로그램을 개발하였다. 교육 프로그램은 초등정보영재 전문가가 개발하였으며, 인공지능 교육 전문가가 검증하였다. 교육 프로그램은 15차시로 구성하였으며, 인공지능에 대한 이해, 데이터 수집 및 표현, 모델 선택, 훈련, 평가, 실생활 사례 제작, 예측으로 내용을 구성하였다. 교육 프로그램에서 학습 모형은 이재호와 홍창의(2009)의 문제 중심형 e-PBL 학습 모형을 본 연구에 맞게 수정하여 활용하였다. 향후 연구에서는 개발한 교육 프로그램을 소외계층 초등 정보영재에 적용하고, 교육 프로그램을 통한 소외계층 초등정보 영재의 변화를 분석하고자 한다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.217-218
/
2023
인공지능은 디지털 대전환 시대의 핵심적인 기술로 사회 전반에 변화를 주도하였다. 우리나라는 인공지능을 이해하고 이를 활용하는 역량을 길러주기 위해 전 국민을 대상으로 교육을 진행하고 있다. 그러나 초등학생 대상 인공지능 교육 프로그램은 체험 및 놀이 실습으로 한정되어 교육적 효과에 한계가 있다. 그러므로 본 연구에서는 생산적 실패를 활용하여 인공지능에 대한 개념적 이해 및 실생활 전이를 촉진하는 교육 프로그램을 개발하였다. 연구 대상은 초등학교 5~6학년이며 2022 개정 교육과정에서 강조하는 자기 주도적 학습 역량과 실생활 연계 교육을 반영하여 설계한 6차시 분량의 프로그램이다. 본 연구에서 개발한 교육 프로그램은 향후 타당성 및 신뢰도 검증을 거쳐 현장에 적용하는 후속 연구로 이어질 것이다.
본 연구는 실시간 MOT(Multiple-Object-Tracking)의 성능을 향상시키기 위해 다양한 기법을 적용한 MOT 모델을 설계한다. 연구에서 사용하는 Backbone 모델은 TBD(Tracking-by-Detection) 기반의 Tracking 모델을 사용한다. Heatmap Detection을 통해 객체를 검출하고 Transformer 기반의 Feature를 연결하여 Tracking 한다. 제안하는 방법은 Anchor 기반의 Detection의 장시간 문제와 추적 객체 정보 전달손실을 감소하여 실시간 객체 추적에 도움이 될 것으로 사료된다.
This study aims to analyze the perceptions and educational needs of pre-service teachers for the use of Artificial Intelligence (AI) in education. To this end, we collected survey data from 25 undergraduate students who were enrolled in a teacher education college in Seoul. The purpose of the survey was to measure the importance and current performance for instructional AI use based on the technological, pedagogical, and content knowledge (TPACK) framework, and to explore the priority of educational needs using Borich's needs analysis and the Locus for Focus model. The results of the study confirmed that Ethics and TPK competencies are prioritized. Additionally, the results indicated a high demand for practical knowledge that can be implemented in the practice of education. Based on the results, it is necessary to develop a teacher education program that focuses on ethical aspects and teaching strategy competencies in AI-based education.
현대 컴퓨터 비전 분야에서는 객체 추적이 중요한 연구 주제 중 하나다. 기존 Tracking By Detection 방식은 실시간 추적 속도와 Tracklet을 유지할 수 있는 정보 전달의 한계를 가지고 있다. 본 연구에서는 유사도 비교 모듈을 기반으로 Tracking By Detection 모델을 설계하고자 한다. 탐지 모델은 Anchor를 사용하지 않는 CenterNet을 사용하고 탐지된 값에 유사도 비교 알고리즘을 적용하여 객체 탐지와 객체 추적을 동시에 수행하는 모델을 제안한다. 제안하는 방법은 Occlusion으로 인한 객체 정보 손실을 완화하고, 새로운 객체 및 장애물에 대해 강건할 것으로 사료된다.
Journal of information and communication convergence engineering
/
v.22
no.2
/
pp.153-158
/
2024
This study aims to summarize the effects of Arduino-based educational programs through a meta-analysis. Eleven eligible primary studies were obtained through a systematic literature review and coded accordingly. The results are as follows: The meta-analysis revealed that the overall effect size for all the studies was 0.518. Analysis of the moderator variables indicated statistically significant differences between them. Regarding the learning domains, the results were ranked in descending order of the cognitive and affective domains. Within the cognitive domain, the effect sizes were ranked in descending order as follows: logical thinking, content knowledge, convergence competency, self-efficacy, computational thinking, and creative problem-solving skills. In terms of subject areas, the descending order of effect sizes was agriculture, STEAM, environmental science, practical arts, artificial intelligence, informatics, and computers. Regarding school level, the results were ranked in the following descending order: college, elementary school, middle school, and high school.
Satellite technology has emerged as a powerful tool in modern agriculture, offering capabilities for Earth observation, land-use pattern analysis, crop productivity assessment, and natural disaster prevention. This mini-review provides a concise overview of the applications and benefits of satellite technologies in agriculture. It discusses how satellite imagery enables the monitoring of crop health, identification of land-use patterns, evaluation of crop productivity, and mitigation of natural disasters. Farmers and policymakers can make informed decisions to optimize agricultural practices, enhance food security, and promote sustainable agriculture by leveraging satellite data. Integrating satellite technology with other advancements, such as artificial intelligence and precision farming techniques, holds promise for further revolutionizing the agricultural sector. Overall, satellite technology has immense potential for improving agricultural efficiency, resilience, and sustainability in the face of evolving environmental challenges.
It is difficult to detect a small-scale leakage in a nuclear power plant (NPP) quickly and take appropriate action. Delaying these procedures can have adverse effects on NPPs. In this paper, we propose leak flow rate prediction using the bidirectional gated recurrent unit (Bi-GRU) method to detect leakage quickly and accurately in small-scale leakage situations because large-scale leak rates are known to be predicted accurately. The data were acquired by simulating small loss-of-coolant accidents (LOCA) or small-scale leakage situations using the modular accident analysis program (MAAP) code. In addition, to improve prediction performance, data were collected by distinguishing the break sizes in more detail. In addition, the prediction accuracy was improved by performing both LOCA diagnosis and leak flow rate prediction in small LOCA situations. The prediction model developed using the Bi-GRU showed a superior prediction performance compared with other artificial intelligence methods. Accordingly, the accurate and effective prediction model for small-scale leakage situations proposed herein is expected to support operators in decision-making and taking actions.
It is important to preempt new technology because the technology competition is getting much tougher. Stakeholders conduct exploration activities continuously for new technology preoccupancy at the right time. Gartner's Hype Cycle has significant implications for stakeholders. The Hype Cycle is a expectation graph for new technologies which is combining the technology life cycle (S-curve) with the Hype Level. Stakeholders such as R&D investor, CTO(Chef of Technology Officer) and technical personnel are very interested in Gartner's Hype Cycle for new technologies. Because high expectation for new technologies can bring opportunities to maintain investment by securing the legitimacy of R&D investment. However, contrary to the high interest of the industry, the preceding researches faced with limitations aspect of empirical method and source data(news, academic papers, search traffic, patent etc.). In this study, we focused on two research questions. The first research question was 'Is there a difference in the characteristics of the network structure at each stage of the hype cycle?'. To confirm the first research question, the structural characteristics of each stage were confirmed through the component cohesion size. The second research question is 'Is there a pattern of diffusion at each stage of the hype cycle?'. This research question was to be solved through centralization index and network density. The centralization index is a concept of variance, and a higher centralization index means that a small number of nodes are centered in the network. Concentration of a small number of nodes means a star network structure. In the network structure, the star network structure is a centralized structure and shows better diffusion performance than a decentralized network (circle structure). Because the nodes which are the center of information transfer can judge useful information and deliver it to other nodes the fastest. So we confirmed the out-degree centralization index and in-degree centralization index for each stage. For this purpose, we confirmed the structural features of the community and the expectation diffusion patterns using Social Network Serice(SNS) data in 'Gartner Hype Cycle for Artificial Intelligence, 2021'. Twitter data for 30 technologies (excluding four technologies) listed in 'Gartner Hype Cycle for Artificial Intelligence, 2021' were analyzed. Analysis was performed using R program (4.1.1 ver) and Cyram Netminer. From October 31, 2021 to November 9, 2021, 6,766 tweets were searched through the Twitter API, and converting the relationship user's tweet(Source) and user's retweets (Target). As a result, 4,124 edgelists were analyzed. As a reult of the study, we confirmed the structural features and diffusion patterns through analyze the component cohesion size and degree centralization and density. Through this study, we confirmed that the groups of each stage increased number of components as time passed and the density decreased. Also 'Innovation Trigger' which is a group interested in new technologies as a early adopter in the innovation diffusion theory had high out-degree centralization index and the others had higher in-degree centralization index than out-degree. It can be inferred that 'Innovation Trigger' group has the biggest influence, and the diffusion will gradually slow down from the subsequent groups. In this study, network analysis was conducted using social network service data unlike methods of the precedent researches. This is significant in that it provided an idea to expand the method of analysis when analyzing Gartner's hype cycle in the future. In addition, the fact that the innovation diffusion theory was applied to the Gartner's hype cycle's stage in artificial intelligence can be evaluated positively because the Gartner hype cycle has been repeatedly discussed as a theoretical weakness. Also it is expected that this study will provide a new perspective on decision-making on technology investment to stakeholdes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.