• Title/Summary/Keyword: Artificial intelligence program

Search Result 332, Processing Time 0.028 seconds

Smart support system for diagnosing severe accidents in nuclear power plants

  • Yoo, Kwae Hwan;Back, Ju Hyun;Na, Man Gyun;Hur, Seop;Kim, Hyeonmin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.562-569
    • /
    • 2018
  • Recently, human errors have very rarely occurred during power generation at nuclear power plants. For this reason, many countries are conducting research on smart support systems of nuclear power plants. Smart support systems can help with operator decisions in severe accident occurrences. In this study, a smart support system was developed by integrating accident prediction functions from previous research and enhancing their prediction capability. Through this system, operators can predict accident scenarios, accident locations, and accident information in advance. In addition, it is possible to decide on the integrity of instruments and predict the life of instruments. The data were obtained using Modular Accident Analysis Program code to simulate severe accident scenarios for the Optimized Power Reactor 1000. The prediction of the accident scenario, accident location, and accident information was conducted using artificial intelligence methods.

A Study on Voice Command Learning of Smart Toy using Convolutional Neural Network (합성곱 신경망을 이용한 스마트 토이의 음성명령 학습에 관한 연구)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1210-1215
    • /
    • 2018
  • Recently, as the IoT(Internet of Things) and AI(Artificial Intelligence) technologies have developed, smart toys that can understand and act on the language of human beings are being studied. In this paper, we study voice learning using CNN(Convolutional Neural Network) by applying artificial intelligence based voice secretary technology to smart toy. When a human voice command gives, Smart Toy recognizes human voice, converts it into text, analyzes the morpheme, and conducts tagging and voice learning. As a result of test for the simulator program implemented using Python, no malfunction occurred in a single command. And satisfactory results were obtained within the selected simulation condition range.

Implementation of a Job Prediction Program and Analysis of Vocational Training Evaluation Data Based on Artificial Intelligence (인공지능(AI) 기반 직업 훈련 평가 데이터 분석 및 취업 예측 프로그램 구현)

  • Jae-Sung Chun;Il-Young Moon
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.409-414
    • /
    • 2024
  • This paper utilizes artificial intelligence to analyze vocational training evaluation data for people with disabilities and selects the optimal prediction model using various machine learning algorithms. It predicts the job categories most likely to employ trainees based on data such as gender, age, education level, type of disability, and basic learning abilities. The goal is to design customized training programs based on these predictions to enhance training efficiency and employment success rates.

Development of AI Data Science Education Program to Foster Data Literacy of Elementary School Students (초등학생의 데이터 리터러시 함양을 위한 AI 데이터 과학 교육 프로그램 개발)

  • Hong, Ji-Yeon;Kim, Yungsik
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2020
  • The development of intelligent information technology based on intelligence and data and network technology implemented by artificial intelligence has instigated innovation in society as a whole and has shown wide social and economic impact. Therefore, not only overseas but also in Korea, AI education is in a hurry to cultivate talents who will lead the upcoming society. Data is an important part of artificial intelligence, and data literacy, which can collect, process, and analyze data, to make data-based decisions, can be seen as an important competency to be developed along with AI literacy. Therefore, in this study, an AI data science education program that can increase data literacy of elementary school students was developed and applied to the experimental group, and its effectiveness was verified through a pre- and post response sample t-test. As a result, all of the four detailed competencies of data literacy, data understanding, collection, analysis, and expression, showed statistically significant improvement, indicating that the AI data science education program was effective in improving students' data literacy.

Sentiment Analysis of the Quotations of Intensive Care Unit Survivors in Qualitative Studies (질적연구 진술문을 이용한 중환자실 생존자의 감성분석)

  • Kang, Jiyeon
    • Journal of Korean Critical Care Nursing
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • Purpose : As the intensive care unit (ICU) survival rate increases, interest in the lives of ICU survivors has also been increasing. The purpose of this study was to identify the sentiment of ICU survivors. Method : The author analyzed the quotations from previous qualitative studies related to ICU survivors; a total of 1,074 sentences comprising 429 quotations from 25 relevant studies were analyzed. A word cloud created in the R program was utilized to identify the most frequent adjectives used, and sentiment and emotional scores were calculated using the Artificial Intelligence (AI) program. Results : The 10 adjectives that appeared the most in the quotations were 'difficult', 'different', 'normal', 'able', 'hard', 'bad', 'ill', 'better', 'weak', and 'afraid', in order of decreasing occurrence. The mean sentiment score was negative ($-.31{\pm}.23$), and the three emotions with the highest score were 'sadness'($.52{\pm}.13$), 'joy'($.35{\pm}.22$), and 'fear'($.30{\pm}.25$). Conclusion : The natural language processing of AI used in this study is a relatively new method. As such, it is necessary to refine the methodology through repeated research in various nursing fields. In addition, further studies on nursing interventions that improve the coherency of ICU memory of survivors and familial support for the ICU survivors are needed.

A Study on a car Insurance purchase Prediction Using Two-Class Logistic Regression and Two-Class Boosted Decision Tree

  • AN, Su Hyun;YEO, Seong Hee;KANG, Minsoo
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • This paper predicted a model that indicates whether to buy a car based on primary health insurance customer data. Currently, automobiles are being used to land transportation and living, and the scope of use and equipment is expanding. This rapid increase in automobiles has caused automobile insurance to emerge as an essential business target for insurance companies. Therefore, if the car insurance sales are predicted and sold using the information of existing health insurance customers, it can generate continuous profits in the insurance company's operating performance. Therefore, this paper aims to analyze existing customer characteristics and implement a predictive model to activate advertisements for customers interested in such auto insurance. The goal of this study is to maximize the profits of insurance companies by devising communication strategies that can optimize business models and profits for customers. This study was conducted through the Microsoft Azure program, and an automobile insurance purchase prediction model was implemented using Health Insurance Cross-sell Prediction data. The program algorithm uses Two-Class Logistic Regression and Two-Class Boosted Decision Tree at the same time to compare two models and predict and compare the results. According to the results of this study, when the Threshold is 0.3, the AUC is 0.837, and the accuracy is 0.833, which has high accuracy. Therefore, the result was that customers with health insurance could induce a positive reaction to auto insurance purchases.

Development of Artificial Intelligence Education Program for Elementary Education Using Advance Organizer (선행조직자를 활용한 초등 인공지능 교육 프로그램 개발)

  • Lee, Dagyeom;Kim, Seong-won;Lee, Youngjun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.219-221
    • /
    • 2022
  • 초등학교 인공지능(Artificial Intelligence, AI) 교육은 학교급별 특성과 수준을 고려하여 놀이 및 체험 활동 중심으로 계획되고 있다. 그러나 교육 현장의 수요 및 AI 리터러시 연구에서 AI 개념의 지도 필요성이 제시되고 있다. 초등학생에게 어렵고 생소한 AI 개념을 교육하기 위해 학습자의 발달 특성을 고려한 교수학습 전략이 필요하다. 선행조직자는 개념 지도 시 학습자의 인지적 부하를 줄일 수 있는 효과적인 교수학습 전략 중 하나로 이미 초등학생을 위한 인공지능 교재에 널리 사용되고 있다. 그러나 교재 분석 결과 선행조직자는 학생별 경험과 양육환경의 차이로 인해 선행조직자로서 기능하지 못할 가능성이 있다. 이를 해결하기 위해 본 연구는 초등학교에 널리 활용될 수 있는 선행조직자를 초등 교육과정에서 추출하여 AI 교육 프로그램을 개발하였다. 본 프로그램은 초등학교 5~6학년 AI 교육 내용 기준에서 AI 개념 요소를 추출하여 초등학교 1~4학년 교과 교육과정에서 선행조직자를 선정하였고 4차시의 교육 프로그램을 개발하였다. 본 연구를 통해 개발된 프로그램이 초등학생의 효과적인 AI 개념을 학습과 AI 리터러시 향상에 도움이 될 것으로 기대된다.

  • PDF

n Expert System for Voltage Control (전압 제어를 위한 전문가 시스템)

  • 백영식;사공일
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.9
    • /
    • pp.684-692
    • /
    • 1989
  • An expert system which is a part of artificial intelligence is developed for controlling violated voltages. Control equipments such as shunt capacitors, inductors, transformer tap changers and generator voltages are utilized. A breadth-first search method is used. A sensitivity tree is suggested to minimize the number of control devices. If the voltage condition program should be utilized to efficiently solve the problem. The expert system uses PROLOG and for the sub-program C language is used. This expert system, when applied to an 8 bus power system, shows satisfactory results.

  • PDF

Development of Machine Learning Education Program for Elementary Students Using Localized Public Data (지역화 공공데이터 기반 초등학생 머신러닝 교육 프로그램 개발)

  • Kim, Bongchul;Kim, Bomsol;Ko, Eunjeong;Moon, Woojong;Oh, Jeongcheol;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.751-759
    • /
    • 2021
  • This study developed an artificial intelligence education program using localized public data as an educational method for improving computing thinking skills of elementary school students. According to the ADDIE model, the program design was carried out based on the results of pre-requisite analysis for elementary school students, and textbooks and education programs were developed. Based on localized public data, the training program was constructed to learn the principles of artificial intelligence using machine learning for kids and scratches and to solve problems and improve computational thinking through abstracting public data for purpose. It is necessary to put this training program into the field through further research and verify the change in students' computational thinking as a result.

Development of Convergence Education Program for 'Understanding of Molecular Structure' using Machine Learning Educational Platform (머신러닝 교육 플랫폼 활용 '분자 구조의 이해'를 위한 융합교육 프로그램 개발)

  • Yi, Soyul;Lee, Youngjun
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.961-972
    • /
    • 2021
  • In this study, an educational program was developed so that artificial intelligence could be used as a transdisciplinary convergence education with other disciplines. The main educational content is designed for 8 hours using machine learning to help students understand the molecular structure dealt with in high school chemistry. The program developed in this study calculated the I-CVI (Item Content Validity Index) value through expert review, and as a result, none of the items were rejected with a score of .80 or higher. Because the program of this study combines the content elements of the chemistry subject and the information (artificial intelligence) subject academically, it is expected that the learner will be able to increase the convergence talent literacy. In addition, since it is not required to secure a additional number of hours for this educational program, the burden on teachers may be low.