Yoo, Kwae Hwan;Back, Ju Hyun;Na, Man Gyun;Hur, Seop;Kim, Hyeonmin
Nuclear Engineering and Technology
/
v.50
no.4
/
pp.562-569
/
2018
Recently, human errors have very rarely occurred during power generation at nuclear power plants. For this reason, many countries are conducting research on smart support systems of nuclear power plants. Smart support systems can help with operator decisions in severe accident occurrences. In this study, a smart support system was developed by integrating accident prediction functions from previous research and enhancing their prediction capability. Through this system, operators can predict accident scenarios, accident locations, and accident information in advance. In addition, it is possible to decide on the integrity of instruments and predict the life of instruments. The data were obtained using Modular Accident Analysis Program code to simulate severe accident scenarios for the Optimized Power Reactor 1000. The prediction of the accident scenario, accident location, and accident information was conducted using artificial intelligence methods.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.9
/
pp.1210-1215
/
2018
Recently, as the IoT(Internet of Things) and AI(Artificial Intelligence) technologies have developed, smart toys that can understand and act on the language of human beings are being studied. In this paper, we study voice learning using CNN(Convolutional Neural Network) by applying artificial intelligence based voice secretary technology to smart toy. When a human voice command gives, Smart Toy recognizes human voice, converts it into text, analyzes the morpheme, and conducts tagging and voice learning. As a result of test for the simulator program implemented using Python, no malfunction occurred in a single command. And satisfactory results were obtained within the selected simulation condition range.
This paper utilizes artificial intelligence to analyze vocational training evaluation data for people with disabilities and selects the optimal prediction model using various machine learning algorithms. It predicts the job categories most likely to employ trainees based on data such as gender, age, education level, type of disability, and basic learning abilities. The goal is to design customized training programs based on these predictions to enhance training efficiency and employment success rates.
Journal of The Korean Association of Information Education
/
v.24
no.6
/
pp.633-641
/
2020
The development of intelligent information technology based on intelligence and data and network technology implemented by artificial intelligence has instigated innovation in society as a whole and has shown wide social and economic impact. Therefore, not only overseas but also in Korea, AI education is in a hurry to cultivate talents who will lead the upcoming society. Data is an important part of artificial intelligence, and data literacy, which can collect, process, and analyze data, to make data-based decisions, can be seen as an important competency to be developed along with AI literacy. Therefore, in this study, an AI data science education program that can increase data literacy of elementary school students was developed and applied to the experimental group, and its effectiveness was verified through a pre- and post response sample t-test. As a result, all of the four detailed competencies of data literacy, data understanding, collection, analysis, and expression, showed statistically significant improvement, indicating that the AI data science education program was effective in improving students' data literacy.
Purpose : As the intensive care unit (ICU) survival rate increases, interest in the lives of ICU survivors has also been increasing. The purpose of this study was to identify the sentiment of ICU survivors. Method : The author analyzed the quotations from previous qualitative studies related to ICU survivors; a total of 1,074 sentences comprising 429 quotations from 25 relevant studies were analyzed. A word cloud created in the R program was utilized to identify the most frequent adjectives used, and sentiment and emotional scores were calculated using the Artificial Intelligence (AI) program. Results : The 10 adjectives that appeared the most in the quotations were 'difficult', 'different', 'normal', 'able', 'hard', 'bad', 'ill', 'better', 'weak', and 'afraid', in order of decreasing occurrence. The mean sentiment score was negative ($-.31{\pm}.23$), and the three emotions with the highest score were 'sadness'($.52{\pm}.13$), 'joy'($.35{\pm}.22$), and 'fear'($.30{\pm}.25$). Conclusion : The natural language processing of AI used in this study is a relatively new method. As such, it is necessary to refine the methodology through repeated research in various nursing fields. In addition, further studies on nursing interventions that improve the coherency of ICU memory of survivors and familial support for the ICU survivors are needed.
This paper predicted a model that indicates whether to buy a car based on primary health insurance customer data. Currently, automobiles are being used to land transportation and living, and the scope of use and equipment is expanding. This rapid increase in automobiles has caused automobile insurance to emerge as an essential business target for insurance companies. Therefore, if the car insurance sales are predicted and sold using the information of existing health insurance customers, it can generate continuous profits in the insurance company's operating performance. Therefore, this paper aims to analyze existing customer characteristics and implement a predictive model to activate advertisements for customers interested in such auto insurance. The goal of this study is to maximize the profits of insurance companies by devising communication strategies that can optimize business models and profits for customers. This study was conducted through the Microsoft Azure program, and an automobile insurance purchase prediction model was implemented using Health Insurance Cross-sell Prediction data. The program algorithm uses Two-Class Logistic Regression and Two-Class Boosted Decision Tree at the same time to compare two models and predict and compare the results. According to the results of this study, when the Threshold is 0.3, the AUC is 0.837, and the accuracy is 0.833, which has high accuracy. Therefore, the result was that customers with health insurance could induce a positive reaction to auto insurance purchases.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.219-221
/
2022
초등학교 인공지능(Artificial Intelligence, AI) 교육은 학교급별 특성과 수준을 고려하여 놀이 및 체험 활동 중심으로 계획되고 있다. 그러나 교육 현장의 수요 및 AI 리터러시 연구에서 AI 개념의 지도 필요성이 제시되고 있다. 초등학생에게 어렵고 생소한 AI 개념을 교육하기 위해 학습자의 발달 특성을 고려한 교수학습 전략이 필요하다. 선행조직자는 개념 지도 시 학습자의 인지적 부하를 줄일 수 있는 효과적인 교수학습 전략 중 하나로 이미 초등학생을 위한 인공지능 교재에 널리 사용되고 있다. 그러나 교재 분석 결과 선행조직자는 학생별 경험과 양육환경의 차이로 인해 선행조직자로서 기능하지 못할 가능성이 있다. 이를 해결하기 위해 본 연구는 초등학교에 널리 활용될 수 있는 선행조직자를 초등 교육과정에서 추출하여 AI 교육 프로그램을 개발하였다. 본 프로그램은 초등학교 5~6학년 AI 교육 내용 기준에서 AI 개념 요소를 추출하여 초등학교 1~4학년 교과 교육과정에서 선행조직자를 선정하였고 4차시의 교육 프로그램을 개발하였다. 본 연구를 통해 개발된 프로그램이 초등학생의 효과적인 AI 개념을 학습과 AI 리터러시 향상에 도움이 될 것으로 기대된다.
The Transactions of the Korean Institute of Electrical Engineers
/
v.38
no.9
/
pp.684-692
/
1989
An expert system which is a part of artificial intelligence is developed for controlling violated voltages. Control equipments such as shunt capacitors, inductors, transformer tap changers and generator voltages are utilized. A breadth-first search method is used. A sensitivity tree is suggested to minimize the number of control devices. If the voltage condition program should be utilized to efficiently solve the problem. The expert system uses PROLOG and for the sub-program C language is used. This expert system, when applied to an 8 bus power system, shows satisfactory results.
Kim, Bongchul;Kim, Bomsol;Ko, Eunjeong;Moon, Woojong;Oh, Jeongcheol;Kim, Jonghoon
Journal of The Korean Association of Information Education
/
v.25
no.5
/
pp.751-759
/
2021
This study developed an artificial intelligence education program using localized public data as an educational method for improving computing thinking skills of elementary school students. According to the ADDIE model, the program design was carried out based on the results of pre-requisite analysis for elementary school students, and textbooks and education programs were developed. Based on localized public data, the training program was constructed to learn the principles of artificial intelligence using machine learning for kids and scratches and to solve problems and improve computational thinking through abstracting public data for purpose. It is necessary to put this training program into the field through further research and verify the change in students' computational thinking as a result.
Journal of The Korean Association of Information Education
/
v.25
no.6
/
pp.961-972
/
2021
In this study, an educational program was developed so that artificial intelligence could be used as a transdisciplinary convergence education with other disciplines. The main educational content is designed for 8 hours using machine learning to help students understand the molecular structure dealt with in high school chemistry. The program developed in this study calculated the I-CVI (Item Content Validity Index) value through expert review, and as a result, none of the items were rejected with a score of .80 or higher. Because the program of this study combines the content elements of the chemistry subject and the information (artificial intelligence) subject academically, it is expected that the learner will be able to increase the convergence talent literacy. In addition, since it is not required to secure a additional number of hours for this educational program, the burden on teachers may be low.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.