• Title/Summary/Keyword: Artificial intelligence model

Search Result 1,777, Processing Time 0.029 seconds

Fruit's Defective Area Detection Using Yolo V4 Deep Learning Intelligent Technology (Yolo V4 딥러닝 지능기술을 이용한 과일 불량 부위 검출)

  • Choi, Han Suk
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.46-55
    • /
    • 2022
  • It is very important to first detect and remove defective fruits with scratches or bruised areas in the automatic fruit quality screening system. This paper proposes a method of detecting defective areas in fruits using the latest artificial intelligence technology, the Yolo V4 deep learning model in order to overcome the limitations of the method of detecting fruit's defective areas using the existing image processing techniques. In this study, a total of 2,400 defective fruits, including 1,000 defective apples and 1,400 defective fruits with scratch or decayed areas, were learned using the Yolo V4 deep learning model and experiments were conducted to detect defective areas. As a result of the performance test, the precision of apples is 0.80, recall is 0.76, IoU is 69.92% and mAP is 65.27%. The precision of pears is 0.86, recall is 0.81, IoU is 70.54% and mAP is 68.75%. The method proposed in this study can dramatically improve the performance of the existing automatic fruit quality screening system by accurately selecting fruits with defective areas in real time rather than using the existing image processing techniques.

A Study on Optimization of Perovskite Solar Cell Light Absorption Layer Thin Film Based on Machine Learning (머신러닝 기반 페로브스카이트 태양전지 광흡수층 박막 최적화를 위한 연구)

  • Ha, Jae-jun;Lee, Jun-hyuk;Oh, Ju-young;Lee, Dong-geun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.55-62
    • /
    • 2022
  • The perovskite solar cell is an active part of research in renewable energy fields such as solar energy, wind, hydroelectric power, marine energy, bioenergy, and hydrogen energy to replace fossil fuels such as oil, coal, and natural gas, which will gradually disappear as power demand increases due to the increase in use of the Internet of Things and Virtual environments due to the 4th industrial revolution. The perovskite solar cell is a solar cell device using an organic-inorganic hybrid material having a perovskite structure, and has advantages of replacing existing silicon solar cells with high efficiency, low cost solutions, and low temperature processes. In order to optimize the light absorption layer thin film predicted by the existing empirical method, reliability must be verified through device characteristics evaluation. However, since it costs a lot to evaluate the characteristics of the light-absorbing layer thin film device, the number of tests is limited. In order to solve this problem, the development and applicability of a clear and valid model using machine learning or artificial intelligence model as an auxiliary means for optimizing the light absorption layer thin film are considered infinite. In this study, to estimate the light absorption layer thin-film optimization of perovskite solar cells, the regression models of the support vector machine's linear kernel, R.B.F kernel, polynomial kernel, and sigmoid kernel were compared to verify the accuracy difference for each kernel function.

A review on urban inundation modeling research in South Korea: 2001-2022 (도시침수 모의 기술 국내 연구동향 리뷰: 2001-2022)

  • Lee, Seungsoo;Kim, Bomi;Choi, Hyeonjin;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.707-721
    • /
    • 2022
  • In this study, a state-of-the-art review on urban inundation simulation technology was presented summarizing major achievements and limitations, and future research recommendations and challenges. More than 160 papers published in major domestic academic journals since the 2000s were analyzed. After analyzing the core themes and contents of the papers, the status of technological development was reviewed according to simulation methodologies such as physically-based and data-driven approaches. In addition, research trends for application purposes and advances in overseas and related fields were analyzed. Since more than 60% of urban inundation research used Storm Water Management Model (SWMM), developing new modeling techniques for detailed physical processes of dual drainage was encouraged. Data-based approaches have become a new status quo in urban inundation modeling. However, given that hydrological extreme data is rare, balanced research development of data and physically-based approaches was recommended. Urban inundation analysis technology, actively combined with new technologies in other fields such as artificial intelligence, IoT, and metaverse, would require continuous support from society and holistic approaches to solve challenges from climate risk and reduce disaster damage.

Comparative Evaluation of Chest Image Pneumonia based on Learning Rate Application (학습률 적용에 따른 흉부영상 폐렴 유무 분류 비교평가)

  • Kim, Ji-Yul;Ye, Soo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.595-602
    • /
    • 2022
  • This study tried to suggest the most efficient learning rate for accurate and efficient automatic diagnosis of medical images for chest X-ray pneumonia images using deep learning. After setting the learning rates to 0.1, 0.01, 0.001, and 0.0001 in the Inception V3 deep learning model, respectively, deep learning modeling was performed three times. And the average accuracy and loss function value of verification modeling, and the metric of test modeling were set as performance evaluation indicators, and the performance was compared and evaluated with the average value of three times of the results obtained as a result of performing deep learning modeling. As a result of performance evaluation for deep learning verification modeling performance evaluation and test modeling metric, modeling with a learning rate of 0.001 showed the highest accuracy and excellent performance. For this reason, in this paper, it is recommended to apply a learning rate of 0.001 when classifying the presence or absence of pneumonia on chest X-ray images using a deep learning model. In addition, it was judged that when deep learning modeling through the application of the learning rate presented in this paper could play an auxiliary role in the classification of the presence or absence of pneumonia on chest X-ray images. In the future, if the study of classification for diagnosis and classification of pneumonia using deep learning continues, the contents of this thesis research can be used as basic data, and furthermore, it is expected that it will be helpful in selecting an efficient learning rate in classifying medical images using artificial intelligence.

A Study on the System for AI Service Production (인공지능 서비스 운영을 위한 시스템 측면에서의 연구)

  • Hong, Yong-Geun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.323-332
    • /
    • 2022
  • As various services using AI technology are being developed, much attention is being paid to AI service production. Recently, AI technology is acknowledged as one of ICT services, a lot of research is being conducted for general-purpose AI service production. In this paper, I describe the research results in terms of systems for AI service production, focusing on the distribution and production of machine learning models, which are the final steps of general machine learning development procedures. Three different Ubuntu systems were built, and experiments were conducted on the system, using data from 2017 validation COCO dataset in combination of different AI models (RFCN, SSD-Mobilenet) and different communication methods (gRPC, REST) to request and perform AI services through Tensorflow serving. Through various experiments, it was found that the type of AI model has a greater influence on AI service inference time than AI machine communication method, and in the case of object detection AI service, the number and complexity of objects in the image are more affected than the file size of the image to be detected. In addition, it was confirmed that if the AI service is performed remotely rather than locally, even if it is a machine with good performance, it takes more time to infer the AI service than if it is performed locally. Through the results of this study, it is expected that system design suitable for service goals, AI model development, and efficient AI service production will be possible.

Detection of Proximal Caries Lesions with Deep Learning Algorithm (심층학습 알고리즘을 활용한 인접면 우식 탐지)

  • Hyuntae, Kim;Ji-Soo, Song;Teo Jeon, Shin;Hong-Keun, Hyun;Jung-Wook, Kim;Ki-Taeg, Jang;Young-Jae, Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.131-139
    • /
    • 2022
  • This study aimed to evaluate the effectiveness of deep convolutional neural networks (CNNs) for diagnosis of interproximal caries in pediatric intraoral radiographs. A total of 500 intraoral radiographic images of first and second primary molars were used for the study. A CNN model (Resnet 50) was applied for the detection of proximal caries. The diagnostic accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curve, and area under ROC curve (AUC) were calculated on the test dataset. The diagnostic accuracy was 0.84, sensitivity was 0.74, and specificity was 0.94. The trained CNN algorithm achieved AUC of 0.86. The diagnostic CNN model for pediatric intraoral radiographs showed good performance with high accuracy. Deep learning can assist dentists in diagnosis of proximal caries lesions in pediatric intraoral radiographs.

A Study on Building Object Change Detection using Spatial Information - Building DB based on Road Name Address - (기구축 공간정보를 활용한 건물객체 변화 탐지 연구 - 도로명주소건물DB 중심으로 -)

  • Lee, Insu;Yeon, Sunghyun;Jeong, Hohyun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.105-118
    • /
    • 2022
  • The demand for information related to 3D spatial objects model in metaverse, smart cities, digital twins, autonomous vehicles, urban air mobility will be increased. 3D model construction for spatial objects is possible with various equipments such as satellite-, aerial-, ground platforms and technologies such as modeling, artificial intelligence, image matching. However, it is not easy to quickly detect and convert spatial objects that need updating. In this study, based on spatial information (features) and attributes, using matching elements such as address code, number of floors, building name, and area, the converged building DB and the detected building DB are constructed. Both to support above and to verify the suitability of object selection that needs to be updated, one system prototype was developed. When constructing the converged building DB, the convergence of spatial information and attributes was impossible or failed in some buildings, and the matching rate was low at about 80%. It is believed that this is due to omitting of attributes about many building objects, especially in the pilot test area. This system prototype will support the establishment of an efficient drone shooting plan for the rapid update of 3D spatial objects, thereby preventing duplication and unnecessary construction of spatial objects, thereby greatly contributing to object improvement and cost reduction.

Development of Graph based Deep Learning methods for Enhancing the Semantic Integrity of Spaces in BIM Models (BIM 모델 내 공간의 시멘틱 무결성 검증을 위한 그래프 기반 딥러닝 모델 구축에 관한 연구)

  • Lee, Wonbok;Kim, Sihyun;Yu, Youngsu;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.3
    • /
    • pp.45-55
    • /
    • 2022
  • BIM models allow building spaces to be instantiated and recognized as unique objects independently of model elements. These instantiated spaces provide the required semantics that can be leveraged for building code checking, energy analysis, and evacuation route analysis. However, theses spaces or rooms need to be designated manually, which in practice, lead to errors and omissions. Thus, most BIM models today does not guarantee the semantic integrity of space designations, limiting their potential applicability. Recent studies have explored ways to automate space allocation in BIM models using artificial intelligence algorithms, but they are limited in their scope and relatively low classification accuracy. This study explored the use of Graph Convolutional Networks, an algorithm exclusively tailored for graph data structures. The goal was to utilize not only geometry information but also the semantic relational data between spaces and elements in the BIM model. Results of the study confirmed that the accuracy was improved by about 8% compared to algorithms that only used geometric distinctions of the individual spaces.

A Study on the Intention to Use of the AI-related Educational Content Recommendation System in the University Library: Focusing on the Perceptions of University Students and Librarians (대학도서관 인공지능 관련 교육콘텐츠 추천 시스템 사용의도에 관한 연구 - 대학생과 사서의 인식을 중심으로 -)

  • Kim, Seonghun;Park, Sion;Parkk, Jiwon;Oh, Youjin
    • Journal of Korean Library and Information Science Society
    • /
    • v.53 no.1
    • /
    • pp.231-263
    • /
    • 2022
  • The understanding and capability to utilize artificial intelligence (AI) incorporated technology has become a required basic skillset for the people living in today's information age, and various members of the university have also increasingly become aware of the need for AI education. Amidst such shifting societal demands, both domestic and international university libraries have recognized the users' need for educational content centered on AI, but a user-centered service that aims to provide personalized recommendations of digital AI educational content is yet to become available. It is critical while the demand for AI education amongst university students is progressively growing that university libraries acquire a clear understanding of user intention towards an AI educational content recommender system and the potential factors contributing to its success. This study intended to ascertain the factors affecting acceptance of such system, using the Extended Technology Acceptance Model with added variables - innovativeness, self-efficacy, social influence, system quality and task-technology fit - in addition to perceived usefulness, perceived ease of use, and intention to use. Quantitative research was conducted via online research surveys for university students, and quantitative research was conducted through written interviews of university librarians. Results show that all groups, regardless of gender, year, or major, have the intention to use the AI-related Educational Content Recommendation System, with the task suitability factor being the most dominant variant to affect use intention. University librarians have also expressed agreement about the necessity of the recommendation system, and presented budget and content quality issues as realistic restrictions of the aforementioned system.

The Development of Biodegradable Fiber Tensile Tenacity and Elongation Prediction Model Considering Data Imbalance and Measurement Error (데이터 불균형과 측정 오차를 고려한 생분해성 섬유 인장 강신도 예측 모델 개발)

  • Se-Chan, Park;Deok-Yeop, Kim;Kang-Bok, Seo;Woo-Jin, Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.489-498
    • /
    • 2022
  • Recently, the textile industry, which is labor-intensive, is attempting to reduce process costs and optimize quality through artificial intelligence. However, the fiber spinning process has a high cost for data collection and lacks a systematic data collection and processing system, so the amount of accumulated data is small. In addition, data imbalance occurs by preferentially collecting only data with changes in specific variables according to the purpose of fiber spinning, and there is an error even between samples collected under the same fiber spinning conditions due to difference in the measurement environment of physical properties. If these data characteristics are not taken into account and used for AI models, problems such as overfitting and performance degradation may occur. Therefore, in this paper, we propose an outlier handling technique and data augmentation technique considering the characteristics of the spinning process data. And, by comparing it with the existing outlier handling technique and data augmentation technique, it is shown that the proposed technique is more suitable for spinning process data. In addition, by comparing the original data and the data processed with the proposed method to various models, it is shown that the performance of the tensile tenacity and elongation prediction model is improved in the models using the proposed methods compared to the models not using the proposed methods.