인공지능 알고리즘을 이용한 유방암의 조기진단에 관련된 연구는 최근들어 활발하게 진행되고 있다. 이는 연구용으로 공개된 초음파 유방 이미지를 활용하여 다양하게 개발되고 있으나, 사용자의 목적에 맞는 처리 속도 및 정확도 등에 다양한 한계점을 보인다. 이러한 문제를 해결하기 위해, 본 논문에서는 ImageNet에서 학습된 ResNet 모델을 현미경 기반 암세포 이미지에서 활용이 가능한 다단계 전이 학습을 제안하고, 이를 다시 전이 학습하여 초음파 유방암 영상을 양성 및 악성으로 분류하는 실험을 진행하였다. 실험을 위한 영상은 양성과 악성이 포함된 250장의 유방암 초음파 영상과 27,200장의 암 세포주 영상으로 구성되었다. 제안된 다단계 전이 학습 알고리즘은 초음파 유방암 영상을 분류하였을 때 96% 이상의 정확도를 보였으며, 향후 암 세포주 및 실시간 영상처리 등의 추가를 통해 보다 높은 활용도와 정확도를 보일 것으로 기대한다.
최근 제4차 산업혁명은 21세기 초부터 정보통신기술 융합기반의 초지능, 초연결 산업혁명으로 디지털 기술과 물리적, 생물학적 기술 사이의 경계가 사라지면서 융합되어 나타나는 기술혁신으로 정의되다. 디지털 기술 분야에서는 인공지능, 사물인터넷 그리고 블록체인 기술을 포함하고 있다. 물리학 기술 분야에는 로봇공학, 무인운송수단과 3D 프린팅 기술을 언급하였다. 생물학 기술 분야에서는 생명공학 및 나노기술을 두각을 나타낼 것이라고 말했다. 2016년 1월 스위스 다보스에서 개최된 세계경제포럼에서 회장인 슈밥(Klaus Schwab) 교수가 처음으로 제4차 산업혁명을 제안하였다. AHP(analytic hierarchy process) 분석기법을 적용하기 위해 1단계 요인으로는 디지털기술, 물리학기술 그리고 생물학기술으로 설계하였다. 또한 2단계 요인으로는 개념모델에서 제시된 8개 세부 서비스로 조직하였다. 따라서 분석 결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하고자 한다.
최근 증가하고 있는 선박의 충돌 사고 예방을 위하여 인공지능 기반의 자율운항선박(Maritime Autonomous Surface Ship, MASS)에 관한 연구가 진행되고 있다. 하지만 대부분의 자율운항선박 관련 연구들은 자율운항시스템의 크기와 비용으로 인해 주로 중대형 선박을 그 대상으로 하고 있으며, 여기에 사용되는 센서들은 소형선박에 탑재하기 어렵다는 문제를 지닌다. 따라서 이 논문은 소형선박의 자율운항을 위하여 GPS와 IMU 센서를 탑재한 경로 추적 시스템을 제안한다. GPS와 IMU 센서는 선박의 정확한 위치 파악을 위하여 활용되며, 이를 통하여 제안 시스템은 소형선박 모형을 수동으로 제어하여 경로를 생성하고, 이후 소형선박이 동일한 경로를 이동할 시 Pure Pursuit 알고리즘을 이용하여 경로를 추적하도록 한다. 그 결과, 이 연구는 경량화된 저가의 센서들을 이용하여 소형 선박의 자율운항 시스템을 저비용으로 개발할 수 있을 것으로 기대된다.
Objectives: Disability weights require regular updates, as they are influenced by both diseases and societal perceptions. Consequently, it is necessary to develop an up-to-date list of the causes of diseases and establish a survey panel for estimating disability weights. Accordingly, this study was conducted to calculate, assess, modify, and validate disability weights suitable for Korea, accounting for its cultural and social characteristics. Methods: The 380 causes of disease used in the survey were derived from the 2019 Global Burden of Disease Collaborative Network and from 2019 and 2020 Korean studies on disability weights for causes of disease. Disability weights were reanalyzed by integrating the findings of an earlier survey on disability weights in Korea with those of the additional survey conducted in this study. The responses were transformed into paired comparisons and analyzed using probit regression analysis. Coefficients for the causes of disease were converted into predicted probabilities, and disability weights in 2 models (model 1 and 2) were rescaled using a normal distribution and the natural logarithm, respectively. Results: The mean values for the 380 causes of disease in models 1 and 2 were 0.488 and 0.369, respectively. Both models exhibited the same order of disability weights. The disability weights for the 300 causes of disease present in both the current and 2019 studies demonstrated a Pearson correlation coefficient of 0.994 (p=0.001 for both models). This study presents a detailed add-on approach for calculating disability weights. Conclusions: This method can be employed in other countries to obtain timely disability weight estimations.
인공지능이 발전하면서 AI 챗봇 시스템의 활용이 활발히 이루어지고 있다. 그 예로 공공기관에서는 민원, 행정 분야에서 업무 보조, 전문지식 서비스 등으로 챗봇 활용 분야가 확대되고 있으며 민간기업은 대화형 고객 응대 서비스 등으로 챗봇을 활용하고 있다. 본 연구에서는 시나리오 기반의 AI 음성 챗봇 시스템을 제안하여 박물관의 운영 비용을 절감하고 관람객에게 양방향성 안내 서비스를 제공하고자 한다. 구현한 음성 챗봇 시스템은 실시간으로 특정 디렉터리를 감시하여 사용자의 음성을 감지하는 감시자 객체와 음성 파일이 생성되면 순차적으로 모델별 추론을 수행하여 AI의 응대 음성을 출력하는 이벤트 핸들러 객체로 구성되며, 스레드와 데크를 활용한 중복 방지 기능을 포함하여 단일 GPU 환경에서 추론 중에 GPU의 연산이 중복되지 않도록 한다.
최근 건설 현장의 안전사고 비율은 전체 산업에서 가장 높은 비중을 차지한다. 인공지능 기술을 건설 현장에 접목하기 위해서는 기초 학습 자료로 활용될 수 있는 데이터셋 확보가 필수적이다. 본 논문에서는 실제 현장 확보를 통해 원천 데이터를 수집하였으며, 토목 현장에서 주로 운용되고 있는 주요 건설장비 객체를 선정하고 약 9만장의 정지영상 데이터셋 가공을 통해 최적의 학습 데이터셋 구축을 완료하였다. 또한, 객체 인식분야의 대표적인 모델인 YOLO를 활용하여 구축된 데이터의 검증 작업을 수행하였고 90 % 근접한 검출 성능을 확인해 데이터 신뢰성을 확보하였다. 본 연구에서 사용되는 학습 데이터셋은 공공데이터포털에서 활용 가능하도록 공개를 완료하였다. 본 데이터셋은 향후 건설안전 분야의 객체 인식 기술의 건설현장 적용을 위한 기반 데이터로 활용 가능하리라 판단된다.
딥러닝은 이미지, 텍스트와 같이 복잡한 데이터를 분류 및 인식하는데 유용한 방법으로 딥러닝 기법의 정확도는 딥러닝이 인터넷상의 AI 기반의 서비스를 유용하게 하는데 기초가 되었다. 그러나 딥러닝에서 훈련에 사용되는 방대한 양의 사용자 데이터는 사생활 침해 문제를 야기하였고 사진이나 보이스와 같이 사용자이 개인적이고 민감한 데이터를 수집한 기업들이 데이터들을 무기한으로 소유한다. 사용자들은 자신의 데이터를 삭제할 수 없고 사용되는 목적도 제한할 수 없다. 예를 들면, 환자 진료기록에 대한 딥러닝 기술을 적용하기 원하는 의료기관들과 같은 데이터소유자들은 사생활과 기밀유지 문제로 환자의 데이터를 공유할 수 없고 딥러닝 기술의 혜택을 받기 어렵다. 우리는 멀티 파티 시스템에서 다수의 작업자들이 입력 데이터집합을 공유하지 않고 신경망 모델을 공동으로 사용할 수 있는 프라이버시 보존 기술을 적용한 딥러닝 방법을 설계한다. 변형된 확률적 경사 하강에 기초한 최적화 알고리즘을 이용하여 하위 집합을 선택적으로 공유할 수 있는 방법을 이용하였고 결과적으로 개인정보를 보호하면서 학습 정확도를 증가시킨 학습을 할 수 있도록 하였다.
스마트 팜은 IoT 기술과 인공지능 기술이 접목되면서 농작물에 투입되는 노동력·에너지·양분 등을 최소화는 연구가 꾸준히 증가하고 있는 상황이다. 그러나, 스마트 팜에서 농작물의 생육 정보를 효율적으로 관리하는 연구는 현재까지 미진한 상태이다. 본 논문에서는 스마트 팜에 자율 센서를 적용하여 농작물의 생육 정보를 효율적으로 모니터링할 수 있는 관리 기법을 제안한다. 제안 기법은 농작물의 생육 정보를 자율 센서를 통해 수집한 후 생육 정보를 농작물 재배에 재활용하는데 초점을 갖는다. 특히, 제안 기법은 농작물의 생육 정보를 한 슬롯으로 할당한 후 로드밸런싱을 수행하도록 농작물별로 가중치를 부여하며, 농작물의 생육 정보 간의 간섭을 서로 최소화한다. 또한, 제안 기법은 농작물의 생육 정보를 4단계 (센싱 탐지 단계, 센싱 전송 단계, 애플리케이션 처리 단계, 데이터 관리 단계 등)로 처리할 때, 농작물의 중요 관리점을 실시간으로 전산화하기 때문에 관리 기준 이외의 경우에는 즉각적인 경고 시스템이 동작한다. 성능평가 결과, 자율 센서의 정확도는 기존 기법보다 평균 22.9%의 향상된 결과를 얻었으며, 효율성은 기존 기법보다 평균 16.4% 향상된 결과를 얻었다.
Purpose: The purpose of this study is to actually implement and verify whether welding defects can be detected in real time by utilizing deep learning AI solutions in the welding process of electric vehicle hairpin winding motors. Methods: AI's function and technological elements using synthetic neural network were applied to existing electric vehicle hairpin winding motor laser welding process by making special hardware for detecting electric vehicle hairpin motor laser welding defect. Results: As a result of the test applied to the welding process of the electric vehicle hairpin winding motor, it was confirmed that defects in the welding part were detected in real time. The accuracy of detection of welds was achieved at 0.99 based on mAP@95, and the accuracy of detection of defective parts was 1.18 based on FB-Score 1.5, which fell short of the target, so it will be supplemented by introducing additional lighting and camera settings and enhancement techniques in the future. Conclusion: This study is significant in that it improves the welding quality of hairpin winding motors of electric vehicles by applying domestic artificial intelligence solutions to laser welding operations of hairpin winding motors of electric vehicles. Defects of a manufacturing line can be corrected immediately through automatic welding inspection after laser welding of an electric vehicle hairpin winding motor, thus reducing waste throughput caused by welding failure in the final stage, reducing input costs and increasing product production.
To estimate the biological reference points, suitable for fisheries management of sandfish Arctoscopus japonicas in the East Sea of Korea, we simulated the yield-per-recruit (Y/R) from age 0 to 6 (0-2,555 days). The stimulation was based on two instantaneous natural mortality conditions: size-dependent (Mt, d-1) and constant (Mcons, d-1); Subsequently, the biological reference points of the two mortality conditions was compared. Mt decreased from 0.0075 d-1 to 0.0018 d-1 depending on growth, and Mcons remained constant at 0.0011 d-1 for all ages. Our Y/R model showed that the maximum yield of Mcons was 14 times higher than that of the Mt. The length at first capture to maximize the harvest at the F0.1 points of the two natural mortality conditions was Lc,t=10.2 cm (TL) and Lc,cons=17 cm (TL). We concluded that Mt was more suitable for estimating M than Mcons; this is because Lc,t showed minimal difference from the current fishing regulations (11 cm, TL), and Mt reflected more biological characteristics than Mcons. We suggest that 10.2 cm and 0.8 as the suitable length at first capture and corresponding age, respectively for efficient fisheries management of sandfish.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.