The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.3
/
pp.63-67
/
2024
Recently, artificial intelligence (AI) workloads encompassing various industries such as smart logistics, FinTech, and entertainment are being executed on the cloud. In this paper, we address the scheduling issues of various AI workloads on a multi-tenant cloud system composed of heterogeneous GPU clusters. Traditional scheduling decreases GPU utilization in such environments, degrading system performance significantly. To resolve these issues, we present a new scheduling approach utilizing genetic algorithm-based optimization techniques, implemented within a process-based event simulation framework. Trace driven simulations with diverse AI workload traces collected from Alibaba's MLaaS cluster demonstrate that the proposed scheduling improves GPU utilization compared to conventional scheduling significantly.
KIPS Transactions on Software and Data Engineering
/
v.12
no.9
/
pp.399-406
/
2023
Cloud computing has been evolved to support edge computing architecture that combines fog management layer with edge servers. The main reason why it is received much attention is low communication latency for real-time IoT applications. At the same time, various cloud task scheduling techniques based on artificial intelligence have been proposed. Artificial intelligence-based cloud task scheduling techniques show better performance in comparison to existing methods, but it has relatively high scheduling time. In this paper, we propose a deep learning-based dynamic scheduling with multi-agents supporting scalability in edge computing environments. The proposed method shows low scheduling time than previous artificial intelligence-based scheduling techniques. To show the effectiveness of the proposed method, we compare the performance between previous and proposed methods in a scalable experimental environment. The results show that our method supports real-time IoT applications with low scheduling time, and shows better performance in terms of the number of completed cloud tasks in a scalable experimental environment.
The purpose of this study is to investigate the applications and possibilities of major programs that provide services using artificial intelligence in mathematics education. For this study, related papers, reports, and materials were collected and analyzed, focusing on materials mostly published within the last five years. The researcher searched the keywords of "artificial intelligence", "artificial intelligence", "AI" and "mathematics education" independently or in combination. As a result of the study, artificial intelligence for mathematics education was mostly supporting learners' personalized mathematics learning, defining it as an auxiliary role to support human mathematics teachers, and upgrading the technology of not only cognitive aspects but also affective aspects. As suggestions, the researcher argued that followings are necessary: Research for the establishment of an elaborate artificial intelligence mathematical system, discovery of artificial intelligence technology for appropriate use to support mathematics education, development of high quality of mathematics contents for artificial intelligence, and the establishment and operation of a cloud-based comprehensive system for mathematics education. The researcher proposed that continuous research to effectively help students study mathematics using artificial intelligence including students' emotional or empathetic abilities, and collaborative learning, which is only possible in offline environments. Also, the researcher suggested that more sophisticated materials should be developed for designing mathematics teaching and learning by using artificial intelligence.
Recently, computational intelligence has received a lot of attention from researchers due to its potential applications to artificial intelligence. In computer science, computational intelligence refers to a machine's ability to learn how to compete various tasks, such as making observations or carrying out experiments. We adopted a computational intelligence solution to monitoring residual resources in cloud computing environments. The proposed residual resource monitoring scheme periodically monitors the cloud-based host machines, so that the post migration performance of a virtual machine is as consistent with the pre-migration performance as possible. To this end, we use a novel similarity measure to find the best target host to migrate a virtual machine to. The design of the proposed residual resource monitoring scheme helps maintain the quality of service and service level agreement during the migration. We carried out a number of experimental evaluations to demonstrate the effectiveness of the proposed residual resource monitoring scheme. Our results show that the proposed scheme intelligently measures the similarities between virtual machines in cloud computing environments without causing performance degradation, whilst preserving the quality of service and service level agreement.
Journal of the Korea Institute of Military Science and Technology
/
v.27
no.3
/
pp.375-386
/
2024
Autonomous weapon systems act according to artificial intelligence-based judgement based on recognition through various sensors. Test and evaluation for various scenarios is required depending on the characteristics that artificial intelligence-based judgement is made. As a part of this approach, this paper proposed a LiDAR point cloud augmentation method for mixed-reality based test and evaluation. The augmentation process is achieved by mixing real and virtual LiDAR signals based on the virtual LiDAR synchronized with the pose of the autonomous weapon system. For realistic augmentation of test and evaluation purposes, appropriate intensity values were inserted when generating a point cloud of a virtual object and its validity was verified. In addition, when mixing the generated point cloud of the virtual object with the real point cloud, the proposed method enhances realism by considering the occlusion phenomenon caused by the insertion of the virtual object.
Ju-Hyeon Kim;Jeong-Eun Choi;U-Gyeong Shin;Min-Jun Piao;Tae-Kook Kim
Journal of Internet of Things and Convergence
/
v.10
no.1
/
pp.21-27
/
2024
This paper presents the implementation of a personalized real-time information-providing application utilizing filtering and web crawling technologies. The implemented application performs web crawling based on the user-set keywords within web pages, using the Jsoup library as a basis for the selected keywords. The crawled data is then stored in a MySQL database. The stored data is presented to the user through an application implemented using Flutter. Additionally, mobile push notifications are provided using Firebase Cloud Messaging (FCM). Through these methods, users can efficiently obtain the desired information quickly. Furthermore, there is an expectation that this approach can be applied to the Internet of Things (IoT) where big data is generated, allowing users to receive only the information they need.
Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.
Demand for big data analysis and AI developers is increasing, but there is a lack of an education base to supply them. In this paper, by developing a cloud-based artificial intelligence education platform, the goal was to establish an environment in which practical practical training can be efficiently learned at low cost at educational institutions and IT companies. The development of the education platform was carried out by planning scenarios for each user, architecture design, screen design, implementation of development functions, and hardware construction. This training platform consists of a containerized workload, service management platform, lecture and development platform for instructors and students, and secured cloud stability through real-time alarm system and age test, CI/CD development environment, and reliability through docker image distribution. The development of this education platform is expected to expand opportunities to enter new businesses in the education field and contribute to fostering working-level human resources in the AI and big data fields.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.6
/
pp.1545-1559
/
2023
In the cloud environment, microservices are implemented through Kubernetes, and these services can be expanded or reduced through the autoscaling function under Kubernetes, depending on the service request or resource usage. However, the increase in the number of nodes or distributed microservices in Kubernetes and the unpredictable autoscaling function make it very difficult for system administrators to conduct operations. Artificial Intelligence for IT Operations (AIOps) supports resource management for cloud services through AI and has attracted attention as a solution to these problems. For example, after the AI model learns the metric or log data collected in the microservice units, failures can be inferred by predicting the resources in future data. However, it is difficult to construct data sets for generating learning models because many microservices used for autoscaling generate different metrics or logs in the same timestamp. In this study, we propose a cloud data refining module and structure that collects metric or log data in a microservice environment implemented by Kubernetes; and arranges it into computing resources corresponding to each service so that AI models can learn and analogize service-specific failures. We obtained Kubernetes-based AIOps learning data through this module, and after learning the built dataset through the AI model, we verified the prediction result through the differences between the obtained and actual data.
A hyper-connected intelligence information society is emerging that creates new value by converging IoT, AI, and Bigdata, which are new technologies of the fourth industrial revolution, in all industrial fields. Everything is connected to the network and data is exploding, and artificial intelligence can learn on its own and even intellectual judgment functions are possible. In particular, the Internet of Things provides a new communication environment that can be connected to anything, anytime, anywhere, enabling super-connections where everything is connected. Artificial intelligence technology is implemented so that computers can execute human perceptions, learning, reasoning, and natural language processing. Artificial intelligence is developing advanced technologies such as machine learning, deep learning, natural language processing, voice recognition, and visual recognition, and includes software, machine learning, and cloud technologies specialized in various applications such as safety, medical, defense, finance, and welfare. Through this, it is utilized in various fields throughout the industry to provide human convenience and new values. However, on the contrary, it is time to respond as intelligent and sophisticated cyber threats are increasing and accompanied by potential adverse functions such as securing the technical safety of new technologies. In this paper, we propose a new data modeling method to enable IoT integrated security control by utilizing artificial intelligence technology as a way to solve these adverse functions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.