• Title/Summary/Keyword: Artificial intelligence cloud

Search Result 215, Processing Time 0.023 seconds

Scheduling of Artificial Intelligence Workloads in Could Environments Using Genetic Algorithms (유전 알고리즘을 이용한 클라우드 환경의 인공지능 워크로드 스케줄링)

  • Seokmin Kwon;Hyokyung Bahn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.63-67
    • /
    • 2024
  • Recently, artificial intelligence (AI) workloads encompassing various industries such as smart logistics, FinTech, and entertainment are being executed on the cloud. In this paper, we address the scheduling issues of various AI workloads on a multi-tenant cloud system composed of heterogeneous GPU clusters. Traditional scheduling decreases GPU utilization in such environments, degrading system performance significantly. To resolve these issues, we present a new scheduling approach utilizing genetic algorithm-based optimization techniques, implemented within a process-based event simulation framework. Trace driven simulations with diverse AI workload traces collected from Alibaba's MLaaS cluster demonstrate that the proposed scheduling improves GPU utilization compared to conventional scheduling significantly.

Deep Learning-Based Dynamic Scheduling with Multi-Agents Supporting Scalability in Edge Computing Environments (멀티 에이전트 에지 컴퓨팅 환경에서 확장성을 지원하는 딥러닝 기반 동적 스케줄링)

  • JongBeom Lim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.399-406
    • /
    • 2023
  • Cloud computing has been evolved to support edge computing architecture that combines fog management layer with edge servers. The main reason why it is received much attention is low communication latency for real-time IoT applications. At the same time, various cloud task scheduling techniques based on artificial intelligence have been proposed. Artificial intelligence-based cloud task scheduling techniques show better performance in comparison to existing methods, but it has relatively high scheduling time. In this paper, we propose a deep learning-based dynamic scheduling with multi-agents supporting scalability in edge computing environments. The proposed method shows low scheduling time than previous artificial intelligence-based scheduling techniques. To show the effectiveness of the proposed method, we compare the performance between previous and proposed methods in a scalable experimental environment. The results show that our method supports real-time IoT applications with low scheduling time, and shows better performance in terms of the number of completed cloud tasks in a scalable experimental environment.

Applications and Possibilities of Artificial Intelligence in Mathematics Education (수학교육에서 인공지능 활용 가능성)

  • Park, Mangoo
    • Communications of Mathematical Education
    • /
    • v.34 no.4
    • /
    • pp.545-561
    • /
    • 2020
  • The purpose of this study is to investigate the applications and possibilities of major programs that provide services using artificial intelligence in mathematics education. For this study, related papers, reports, and materials were collected and analyzed, focusing on materials mostly published within the last five years. The researcher searched the keywords of "artificial intelligence", "artificial intelligence", "AI" and "mathematics education" independently or in combination. As a result of the study, artificial intelligence for mathematics education was mostly supporting learners' personalized mathematics learning, defining it as an auxiliary role to support human mathematics teachers, and upgrading the technology of not only cognitive aspects but also affective aspects. As suggestions, the researcher argued that followings are necessary: Research for the establishment of an elaborate artificial intelligence mathematical system, discovery of artificial intelligence technology for appropriate use to support mathematics education, development of high quality of mathematics contents for artificial intelligence, and the establishment and operation of a cloud-based comprehensive system for mathematics education. The researcher proposed that continuous research to effectively help students study mathematics using artificial intelligence including students' emotional or empathetic abilities, and collaborative learning, which is only possible in offline environments. Also, the researcher suggested that more sophisticated materials should be developed for designing mathematics teaching and learning by using artificial intelligence.

An Intelligent Residual Resource Monitoring Scheme in Cloud Computing Environments

  • Lim, JongBeom;Yu, HeonChang;Gil, Joon-Min
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1480-1493
    • /
    • 2018
  • Recently, computational intelligence has received a lot of attention from researchers due to its potential applications to artificial intelligence. In computer science, computational intelligence refers to a machine's ability to learn how to compete various tasks, such as making observations or carrying out experiments. We adopted a computational intelligence solution to monitoring residual resources in cloud computing environments. The proposed residual resource monitoring scheme periodically monitors the cloud-based host machines, so that the post migration performance of a virtual machine is as consistent with the pre-migration performance as possible. To this end, we use a novel similarity measure to find the best target host to migrate a virtual machine to. The design of the proposed residual resource monitoring scheme helps maintain the quality of service and service level agreement during the migration. We carried out a number of experimental evaluations to demonstrate the effectiveness of the proposed residual resource monitoring scheme. Our results show that the proposed scheme intelligently measures the similarities between virtual machines in cloud computing environments without causing performance degradation, whilst preserving the quality of service and service level agreement.

Real-virtual Point Cloud Augmentation Method for Test and Evaluation of Autonomous Weapon Systems (자율무기체계 시험평가를 위한 실제-가상 연계 포인트 클라우드 증강 기법)

  • Saedong Yeo;Gyuhwan Hwang;Hyunsung Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.375-386
    • /
    • 2024
  • Autonomous weapon systems act according to artificial intelligence-based judgement based on recognition through various sensors. Test and evaluation for various scenarios is required depending on the characteristics that artificial intelligence-based judgement is made. As a part of this approach, this paper proposed a LiDAR point cloud augmentation method for mixed-reality based test and evaluation. The augmentation process is achieved by mixing real and virtual LiDAR signals based on the virtual LiDAR synchronized with the pose of the autonomous weapon system. For realistic augmentation of test and evaluation purposes, appropriate intensity values were inserted when generating a point cloud of a virtual object and its validity was verified. In addition, when mixing the generated point cloud of the virtual object with the real point cloud, the proposed method enhances realism by considering the occlusion phenomenon caused by the insertion of the virtual object.

Information-providing Application Based on Web Crawling (웹 크롤링을 통한 개인 맞춤형 정보제공 애플리케이션)

  • Ju-Hyeon Kim;Jeong-Eun Choi;U-Gyeong Shin;Min-Jun Piao;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.21-27
    • /
    • 2024
  • This paper presents the implementation of a personalized real-time information-providing application utilizing filtering and web crawling technologies. The implemented application performs web crawling based on the user-set keywords within web pages, using the Jsoup library as a basis for the selected keywords. The crawled data is then stored in a MySQL database. The stored data is presented to the user through an application implemented using Flutter. Additionally, mobile push notifications are provided using Firebase Cloud Messaging (FCM). Through these methods, users can efficiently obtain the desired information quickly. Furthermore, there is an expectation that this approach can be applied to the Internet of Things (IoT) where big data is generated, allowing users to receive only the information they need.

DiLO: Direct light detection and ranging odometry based on spherical range images for autonomous driving

  • Han, Seung-Jun;Kang, Jungyu;Min, Kyoung-Wook;Choi, Jungdan
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.603-616
    • /
    • 2021
  • Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.

Implementation of Cloud-Based Artificial Intelligence Education Platform (클라우드 기반 인공지능 교육 플랫폼 구현)

  • Wi, Woo-Jin;Moon, Hyung-Jin;Ryu, Gab-Sang
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.85-92
    • /
    • 2022
  • Demand for big data analysis and AI developers is increasing, but there is a lack of an education base to supply them. In this paper, by developing a cloud-based artificial intelligence education platform, the goal was to establish an environment in which practical practical training can be efficiently learned at low cost at educational institutions and IT companies. The development of the education platform was carried out by planning scenarios for each user, architecture design, screen design, implementation of development functions, and hardware construction. This training platform consists of a containerized workload, service management platform, lecture and development platform for instructors and students, and secured cloud stability through real-time alarm system and age test, CI/CD development environment, and reliability through docker image distribution. The development of this education platform is expected to expand opportunities to enter new businesses in the education field and contribute to fostering working-level human resources in the AI and big data fields.

Resource Metric Refining Module for AIOps Learning Data in Kubernetes Microservice

  • Jonghwan Park;Jaegi Son;Dongmin Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1545-1559
    • /
    • 2023
  • In the cloud environment, microservices are implemented through Kubernetes, and these services can be expanded or reduced through the autoscaling function under Kubernetes, depending on the service request or resource usage. However, the increase in the number of nodes or distributed microservices in Kubernetes and the unpredictable autoscaling function make it very difficult for system administrators to conduct operations. Artificial Intelligence for IT Operations (AIOps) supports resource management for cloud services through AI and has attracted attention as a solution to these problems. For example, after the AI model learns the metric or log data collected in the microservice units, failures can be inferred by predicting the resources in future data. However, it is difficult to construct data sets for generating learning models because many microservices used for autoscaling generate different metrics or logs in the same timestamp. In this study, we propose a cloud data refining module and structure that collects metric or log data in a microservice environment implemented by Kubernetes; and arranges it into computing resources corresponding to each service so that AI models can learn and analogize service-specific failures. We obtained Kubernetes-based AIOps learning data through this module, and after learning the built dataset through the AI model, we verified the prediction result through the differences between the obtained and actual data.

Data Modeling for Cyber Security of IoT in Artificial Intelligence Technology (인공지능기술의 IoT 통합보안관제를 위한 데이터모델링)

  • Oh, Young-Taek;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.57-65
    • /
    • 2021
  • A hyper-connected intelligence information society is emerging that creates new value by converging IoT, AI, and Bigdata, which are new technologies of the fourth industrial revolution, in all industrial fields. Everything is connected to the network and data is exploding, and artificial intelligence can learn on its own and even intellectual judgment functions are possible. In particular, the Internet of Things provides a new communication environment that can be connected to anything, anytime, anywhere, enabling super-connections where everything is connected. Artificial intelligence technology is implemented so that computers can execute human perceptions, learning, reasoning, and natural language processing. Artificial intelligence is developing advanced technologies such as machine learning, deep learning, natural language processing, voice recognition, and visual recognition, and includes software, machine learning, and cloud technologies specialized in various applications such as safety, medical, defense, finance, and welfare. Through this, it is utilized in various fields throughout the industry to provide human convenience and new values. However, on the contrary, it is time to respond as intelligent and sophisticated cyber threats are increasing and accompanied by potential adverse functions such as securing the technical safety of new technologies. In this paper, we propose a new data modeling method to enable IoT integrated security control by utilizing artificial intelligence technology as a way to solve these adverse functions.