• Title/Summary/Keyword: Artificial intelligence cloud

Search Result 215, Processing Time 0.032 seconds

Development of Evaluation Framework for Adopting of a Cloud-based Artificial Intelligence Platform (클라우드 기반 인공지능 플랫폼 도입 평가 프레임워크 개발)

  • Kwang-Kyu Seo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.136-141
    • /
    • 2023
  • Artificial intelligence is becoming a global hot topic and is being actively applied in various industrial fields. Not only is artificial intelligence being applied to industrial sites in an on-premises method, but cloud-based artificial intelligence platforms are expanding into "as a service" type. The purpose of this study is to develop and verify a measurement tool for an evaluation framework for the adoption of a cloud-based artificial intelligence platform and test the interrelationships of evaluation variables. To achieve this purpose, empirical testing was conducted to verify the hypothesis using an expanded technology acceptance model, and factors affecting the intention to adopt a cloud-based artificial intelligence platform were analyzed. The results of this study are intended to increase user awareness of cloud-based artificial intelligence platforms and help various industries adopt them through the evaluation framework.

  • PDF

Intelligent Resource Management Schemes for Systems, Services, and Applications of Cloud Computing Based on Artificial Intelligence

  • Lim, JongBeom;Lee, DaeWon;Chung, Kwang-Sik;Yu, HeonChang
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1192-1200
    • /
    • 2019
  • Recently, artificial intelligence techniques have been widely used in the computer science field, such as the Internet of Things, big data, cloud computing, and mobile computing. In particular, resource management is of utmost importance for maintaining the quality of services, service-level agreements, and the availability of the system. In this paper, we review and analyze various ways to meet the requirements of cloud resource management based on artificial intelligence. We divide cloud resource management techniques based on artificial intelligence into three categories: fog computing systems, edge-cloud systems, and intelligent cloud computing systems. The aim of the paper is to propose an intelligent resource management scheme that manages mobile resources by monitoring devices' statuses and predicting their future stability based on one of the artificial intelligence techniques. We explore how our proposed resource management scheme can be extended to various cloud-based systems.

Cloud Computing Industry Trends for Artificial Intelligence (인공지능을 위한 클라우드 컴퓨팅 산업 동향)

  • Choi, J.R.;Song, Y.M.;Kim, C.H.;Kim, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.5
    • /
    • pp.107-116
    • /
    • 2017
  • Artificial intelligence has recently been regarded as a key engine of future industry, and cloud computing and big data technologies have begun to receive significant attention. Major global vendors such as IBM, Microsoft, Google, and Amazon have been launching cloud-computing services for artificial intelligence. On the other hand, the situation domestically is now at an early stage. This report describes the industry trends both domestically and internationally regarding cloud computing for artificial intelligence. We also describe to significance of cloud computing ecosystem and data competitiveness for artificial intelligence.

Data Standardization Method for Quality Management of Cloud Computing Services using Artificial Intelligence (인공지능을 활용한 클라우드 컴퓨팅 서비스의 품질 관리를 위한 데이터 정형화 방법)

  • Jung, Hyun Chul;Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.133-137
    • /
    • 2022
  • In the smart industry where data plays an important role, cloud computing is being used in a complex and advanced way as a convergence technology because it has and fits well with its strengths. Accordingly, in order to utilize artificial intelligence rather than human beings for quality management of cloud computing services, a consistent standardization method of data collected from various nodes in various areas is required. Therefore, this study analyzed technologies and cases for incorporating artificial intelligence into specific services through previous studies, suggested a plan to use artificial intelligence to comprehensively standardize data in quality management of cloud computing services, and then verified it through case studies. It can also be applied to the artificial intelligence learning model that analyzes the risks arising from the data formalization method presented in this study and predicts the quality risks that are likely to occur. However, there is also a limitation that separate policy development for service quality management needs to be supplemented.

A Monitoring Scheme Based on Artificial Intelligence in Mobile Edge Cloud Computing Environments (모바일 엣지 클라우드 환경에서 인공지능 기반 모니터링 기법)

  • Lim, JongBeom;Choi, HeeSeok;Yu, HeonChang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.2
    • /
    • pp.27-32
    • /
    • 2018
  • One of the crucial issues in mobile edge cloud computing environments is to monitor mobile devices. Due to the inherit properties of mobile devices, they are prone to unstable behavior that leads to failures. In order to satisfy the service level agreement (SLA), the mobile edge cloud administrators should take appropriate measures through a monitoring scheme. In this paper, we propose a monitoring scheme of mobile devices based on artificial intelligence in mobile edge cloud computing environments. The proposed monitoring scheme is able to measure faults of mobile devices based on previous and current monitoring information. To this end, we adapt the hidden markov chain model, one of the artificial intelligence technologies, to monitor mobile devices. We validate our monitoring scheme based on the hidden markov chain model. The proposed monitoring scheme can also be used in general cloud computing environments to monitor virtual machines.

Explanable Artificial Intelligence Study based on Blockchain Using Point Cloud (포인트 클라우드를 이용한 블록체인 기반 설명 가능한 인공지능 연구)

  • Hong, Sunghyuck
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.36-41
    • /
    • 2021
  • Although the technology for prediction or analysis using artificial intelligence is constantly developing, a black-box problem does not interpret the decision-making process. Therefore, the decision process of the AI model can not be interpreted from the user's point of view, which leads to unreliable results. We investigated the problems of artificial intelligence and explainable artificial intelligence using Blockchain to solve them. Data from the decision-making process of artificial intelligence models, which can be explained with Blockchain, are stored in Blockchain with time stamps, among other things. Blockchain provides anti-counterfeiting of the stored data, and due to the nature of Blockchain, it allows free access to data such as decision processes stored in blocks. The difficulty of creating explainable artificial intelligence models is a large part of the complexity of existing models. Therefore, using the point cloud to increase the efficiency of 3D data processing and the processing procedures will shorten the decision-making process to facilitate an explainable artificial intelligence model. To solve the oracle problem, which may lead to data falsification or corruption when storing data in the Blockchain, a blockchain artificial intelligence problem was solved by proposing a blockchain-based explainable artificial intelligence model that passes through an intermediary in the storage process.

Towards Open Interfaces of Smart IoT Cloud Services

  • Kim, Kyoung-Sook;Ogawa, Hirotaka
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.235-238
    • /
    • 2016
  • With the vision of Internet of Things (IoT), physical world itself is becoming a connected information system on the Internet and cyber world is computing as a physical act to sense and respond to real-world events collaboratively. The systems that tightly interlink the cyber and physical worlds are often referred to as Smart Systems or Cyber-Physical Systems. Smart IoT Clouds aim to provide a cyber-physical infrastructure for utility (pay-as-you-go) computing to easily and rapidly build, modify and provision auto-scale smart systems that continuously monitor and collect data about real-world events and automatically control their environment. Developing specifications for service interoperability is critical to enable to achieve this vision. In this paper, we bring an issue to extend Open Cloud Computing Interface for uniform, interoperable interfaces for Smart IoT Cloud Services to access services and build a smart system through orchestrating the cloud services.

  • PDF

Study on Proactive Data Process Orchestration in Distributed Cloud

  • Jong-Sub Lee;Seok-Jae Moon
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.135-142
    • /
    • 2024
  • Recently, along with digital transformation, technologies such as cloud computing, big data, and artificial intelligence have been actively introduced. In a situation where these technological changes are progressing rapidly, it is often difficult to manage processes efficiently using existing simple workflow management methods. Companies providing current cloud services are adopting virtualization technologies, including virtual machines (VMs) and containers, in their distributed system infrastructure for automated application deployment. Accordingly, this paper proposes a process-based orchestration system for integrated execution of corporate process-oriented workloads by integrating the potential of big data and machine learning technologies. This system consists of four layers as components for performing workload processes. Additionally, a common information model is applied to the data to efficiently integrate and manage the various formats and uses of data generated during the process creation stage. Moreover, a standard metadata protocol is introduced to ensure smooth exchange between data. This proposed system utilizes various types of data storage to store process data, metadata, and analysis models. This enables flexible management and efficient processing of data.

Analysis of the Status of Artificial Medical Intelligence Technology Based on Big Data

  • KIM, Kyung-A;CHUNG, Myung-Ae
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2022
  • The role of artificial medical intelligence through medical big data has been focused on data-based medical device business and medical service technology development in the field of diagnostic examination of the patient's current condition, clinical decision support, and patient monitoring and management. Recently, with the 4th Industrial Revolution, the medical field changed the medical treatment paradigm from the method of treatment based on the knowledge and experience of doctors in the past to the form of receiving the help of high-precision medical intelligence based on medical data. In addition, due to the spread of non-face-to-face treatment due to the COVID-19 pandemic, it is expected that the era of telemedicine, in which patients will be treated by doctors at home rather than hospitals, will soon come. It can be said that artificial medical intelligence plays a big role at the center of this paradigm shift in prevention-centered treatment rather than treatment. Based on big data, this paper analyzes the current status of artificial intelligence technology for chronic disease patients, market trends, and domestic and foreign company trends to predict the expected effect and future development direction of artificial intelligence technology for chronic disease patients. In addition, it is intended to present the necessity of developing digital therapeutics that can provide various medical services to chronically ill patients and serve as medical support to clinicians.

An Efficient Cloud Service Quality Performance Management Method Using a Time Series Framework (시계열 프레임워크를 이용한 효율적인 클라우드서비스 품질·성능 관리 방법)

  • Jung, Hyun Chul;Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.121-125
    • /
    • 2021
  • Cloud service has the characteristic that it must be always available and that it must be able to respond immediately to user requests. This study suggests a method for constructing a proactive and autonomous quality and performance management system to meet these characteristics of cloud services. To this end, we identify quantitative measurement factors for cloud service quality and performance management, define a structure for applying a time series framework to cloud service application quality and performance management for proactive management, and then use big data and artificial intelligence for autonomous management. The flow of data processing and the configuration and flow of big data and artificial intelligence platforms were defined to combine intelligent technologies. In addition, the effectiveness was confirmed by applying it to the cloud service quality and performance management system through a case study. Using the methodology presented in this study, it is possible to improve the service management system that has been managed artificially and retrospectively through various convergence. However, since it requires the collection, processing, and processing of various types of data, it also has limitations in that data standardization must be prioritized in each technology and industry.