• Title/Summary/Keyword: Artificial Roughness

Search Result 112, Processing Time 0.022 seconds

Surface Characteristics of HA Coated Dental Implant Alloy by Sol-Gel Method (Sol-Gel법으로 HA코팅된 치과용 임플란트 합금의 표면특성)

  • Choe Han-Cheol;Ko Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.167-173
    • /
    • 2005
  • Surface characteristics of HA(hydroxyapatite) coated dental implant alloy by Sol-Gel method were investigated using potentiostat, ICP, SEM, EDX, EPMA and surface roughness tester. Surface roughness of HA coated specimen by Sol-Gel showed higher than that of PVD coated specimen. Corrosion resistance increased in the order of $1\%$ lactic acid, artificial saliva, $0.5\%$ HCI and $0.9\%$ NaCl solution. Amount of Ca element release was higher than that of V and P in the $0.5\%$ HCI and $0.9\%$ NaCl solution.

A Study on the Evaluation of the Hand Value of Korean Fabrics using the Artificial Neural Network (인공신경망을 이용한 한복지 태의 평가에 관한 연구)

  • Moon, Myeong-Hee
    • Korean Journal of Human Ecology
    • /
    • v.12 no.1
    • /
    • pp.63-73
    • /
    • 2003
  • The purpose of this study was to quantify the hands of fabrics for the Korean folk clothes using both a KES-FB and an artificial neural network. In order to select the proper input parameters, we calculated the correlation using step-wise regression between mechanical properties and the hand value of fabrics. For the classification, the primary hand values and total hand value, five neural networks with three-layered structure were constructed using the error back propagation algorithm and, in order to reduce errors and to speed up learning, the momentum method was selected. From the analysis of the primary and total hands using a self-constructed artificial intelligence system, the error rates of sleekness, stiffness, silkiness, and roughness compared with the judgement of expert panels were found to be 3.3%, 3.3%, 1.6%, and 4.9%, respectively, while that of the total hand was 9.83%.

  • PDF

Variation of Moving Dynamic Vehicle Loads According to Surface Smoothness of Pavement Systems (도로포장 표면평탄성에 따른 주행차량의 동적 하중 변화 특성)

  • Kim, Seong-Min;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.135-144
    • /
    • 2008
  • The dynamic loads imposed by moving vehicles have variations in the magnitude due to the surface roughness of the pavement systems and the larger dynamic loads than the design loads may affect the pavement performance. This paper presents variations of the moving dynamic vehicle loads due to the pavement surface roughness. This study was performed as a basic study to apply the pay factor to the surface roughness for the improvement of pavement quality and performance. The profile data was obtained from the old and new pavements and the analysis was performed to investigate the dynamic loads when vehicles move on the pavements having those profiles. The artificial profiles were also developed to find the effects of the vehicle speed, wavelength and amplitude of the surface roughness on the dynamic vehicle loads. The increase in the load magnitude due to the surface roughness affects the stresses and strains of pavements and finally reduces the pavement life. The methodology to obtain the relationship between the surface roughness and the pavement performance was proposed in this study.

  • PDF

The Stereomicroscope and SPM Study on the Marginal Change of Porcelain Crown in Various Repeated Instrumentations for Periodontal Therapy (치주처치를 위한 기구의 반복 사용시 도재관 변연부 변화에 관한 입체 및 주사탐침현미경적 연구)

  • Lee, Si-Cheol;Chung, Chin-Hyung;Yim, Seong-Bin
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.455-472
    • /
    • 2000
  • Instrumentation for periodontal therapy may induce marginal damage which increases plaque accumulation and result in periodontal disease. But there have not been many reports of instrumentations on the artificial crown so far. Therefore this study is conducted to evaluate the effects of various repeated instrumentations on the porcelain crown marginal portion. Of the 10 extracted periodontally diseased maxillary first premolars, were 12 proximal surface used in this study. The finishing line of the preparation was placed on the root surface below CEJ and then the crown was cast and cemented in usual manner. Every 4 surfaces of the 3 instruments-curet, ultrasonic scaler, and ultrasonic curet- is used. and four samples used in each instruments. The relevant procedures and measurements were repeated 3 times in each surfaces. Marginal gap is measured by the microscope and surface roughness, Scannig Probe Microscope. Measurements are made at 5 points in each surfaces, making 20 points in each instrument. The results evaluated statistically were as follows 1. As instrumentation was repeated, both marginal gap and roughness were increased in all group 2. In the hand curet, marginal gap was increased every instrumentation and roughness was increased after second. 3. In the ultrasonic scaler, both marginal gap and roughness were increased every instrumentation. 4. In the ultrasonic curet, marginal gap was increased after third instrumentation and roughness was increased after second. 5. Marginal gap and roughness used by the ultrasonic curet were lower than the others and no difference was seen between the hand curet and ultrasonic scaler From the results of this study, the ultrasonic curet was useful in some aspect, but careful instrumentation was needed. Furthermore it was important to minimize the instrumentation through complete periodontal therapy before setting and adequate plaque control.

  • PDF

Quality monitoring of complex manufacturing systems on the basis of model driven approach

  • Castano, Fernando;Haber, Rodolfo E.;Mohammed, Wael M.;Nejman, Miroslaw;Villalonga, Alberto;Lastra, Jose L. Martinez
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.495-506
    • /
    • 2020
  • Monitoring of complex processes faces several challenges mainly due to the lack of relevant sensory information or insufficient elaborated decision-making strategies. These challenges motivate researchers to adopt complex data processing and analysis in order to improve the process representation. This paper presents the development and implementation of quality monitoring framework based on a model-driven approach using embedded artificial intelligence strategies. In this work, the strategies are applied to the supervision of a microfabrication process aiming at showing the great performance of the framework in a very complex system in the manufacturing sector. The procedure involves two methods for modelling a representative quality variable, such as surface roughness. Firstly, the hybrid incremental modelling strategy is applied. Secondly, a generalized fuzzy clustering c-means method is developed. Finally, a comparative study of the behavior of the two models for predicting a quality indicator, represented by surface roughness of manufactured components, is presented for specific manufacturing process. The manufactured part used in this study is a critical structural aerospace component. In addition, the validation and testing are performed at laboratory and industrial levels, demonstrating proper real-time operation for non-linear processes with relatively fast dynamics. The results of this study are very promising in terms of computational efficiency and transfer of knowledge to manufacturing industry.

Comparison of Color Stability and Surface Roughness of 3D Printing Resin by Polishing Methods (연마 방법에 따른 3D 프린팅 레진의 색조 안정성과 표면 조도의 비교)

  • Heeju Kim;Yujin Kim;Jongsoo Kim;Joonhaeng Lee;Mi Ran Han;Jisun Shin;Jongbin Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.2
    • /
    • pp.205-216
    • /
    • 2023
  • This study aimed to compare the color stability and surface roughness of three-dimensional (3D) printing resin according to polishing methods. 3D-printed resin specimens were fabricated at TC-80DP (Graphy, Seoul, Korea) with a stereolithography 3D printer, and the specimens were divided into three groups, each of which was not polished, was polished using Enhance®, and was polished using a Sof-LexTM disc. The CIE L*a*b* value and the surface roughness of each group were measured and immersed in artificial saliva and orange juice after 0, 1, 7, 30, and 60 days, and the color difference (ΔE*) was calculated. As a result of the study, no noticeable color change was observed in artificial saliva, but a noticeable color change was demonstrated in orange juice after 60 days of immersion, and the difference was significant. In the Sof-LexTM group, surface roughness according to the solution was found to be significantly higher in the orange juice than that in artificial saliva. No significant difference in color change was found according to the polishing method, but surface roughness was significantly lower in the Sof-LexTM group than both that of the unpolished group and that of the Enhance® group. Nevertheless, all groups exhibited clinically acceptable properties regardless of their higher surface roughness than the threshold for plaque accumulation. Overall, this study recommends utilizing Sof-LexTM for polishing 3D printing resin when used in primary anterior tooth coverage.

A study on statistical characteristics of time-varying underwater acoustic communication channel influenced by surface roughness (수면 거칠기에 따른 수면 경로의 시변 통신채널 통계적 특성 분석)

  • In-Seong Hwang;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.491-499
    • /
    • 2023
  • Scattering by Sea surface roughness occurs due to sea level roughness, communication performance deteriorates by causing frequency spread in communication signals and time variation in communication channels. In order to compare the difference in time variation of underwater acoustic communication channel according to the surface roughness, an experiment was performed in a tank owned by Hanyang University Ocean Acoustics Lab. Artificial surface roughness was created in the tank and communication signals with three bandwidths were used (8 kHz, 16 kHz, 32 kHz). The measured surface roughness was converted into a Rayleigh parameter and used as a roughness parameter, and statistical analysis was performed on the time-varying channel characteristics of the surface path using Doppler spread and correlation time. For the Doppler spread of the surface path, the Weighted Root Mean Square Doppler spread (wfσν) that corrected the effect of the carrier frequency and bandwidth of the communication signal was used. Using the correlation time of the surface path and the energy ratio of the direct path and the surface path, the correlation of total channels was simulated and compared with the measured correlation time of total channels. In this study, we propose a method for efficient communication signal design in an arbitrary marine environment by using the time-varying characteristics of the sea surface path according to the sea surface roughness.

Marginal dicrepancy and topography of the artificial crown on the extracted abutment (발치된 치아에 부착된 수복물의 변연 적합 및 형태)

  • Lee, Jeong-Hoon;Choi, Min-Ho;Kim, Min-Ho;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.313-320
    • /
    • 2002
  • The purpose of the present study was to evaluate the marginal discrepancy and topography of artificial crown on teeth extracted due to severe periodontal disease. Twenty specimens were invested into metamethylacrylate resin and cutted into vertical slices along with the long axis of tooth. The selected marginal discrepancy between the outer edge of the crown and the finishing line of abutment was examined by stereo- microscope(Olympus, PM-VSP-3, Japan) at magnification of up to 10, and the topography of finishing margin on crown was observed by stereomicroscopeat magnification of up to $70{\times}$. The results were as follows. (1) The mean marginal discrepancy between extracted tooth and artificial crown were $50.82{\mu}m$. (2) There was a considerable difference in the microstructure of finishing margins among specimens. Microscopic Structure on finishing margin showed indefinite line, poor fit (open, underextended and overextended), distorted margin, and surface roughness. This study suggested that there could be necessary to consider the response of periodontium to the emergence profile of natural tooth and precision of marginal geometry while establishing treatment planning for the reconsruction of the artificial crown.

Improvement and Verification of the Wear Volume Calculation

  • Kim, Hyung-Kyu;Lee, Young-Ho
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 2005
  • A technique for a wear volume calculation is improved and verified in this research. The wear profile data measured by a surface roughness tester is used. The present technique uses a data flattening, the FFT and the windowing procedure, which is used for a general signal processing. The measured value of an average roughness of an unworn surfnce is used for the baseline of the integration for the volume calculation. The improvements from the previous technique are the procedures of the data flattening and the determination of a baseline. It is found that the flattening procedure efnciently manipulates the raw data when the levels of it are not horizontal, which enables us to calculate the volume reasonably well and readily. By comparing it with the weight loss method by using artificial dents, the present method reveals more volume by aroung 3~10%. It is attributed to the protruded region of the specimen and the inaccuracy and data averaging during the weght loss measurement. From a thorough investigation, it is concluded that the present technique can provide an accurate wear volume.

Optimal Control System of Traverse Grinding (트래버스 연삭의 최적 제어시스템)

  • Choi, Jeongju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5704-5708
    • /
    • 2012
  • In this paper, the algorithm to determine the optimal condition of traverse grinding is proposed by using differential evolution algorithm(DEA). The cost function to determine the optimal grinding condition is designed with considering process cost, production rate, surface roughness. Also, the constraint conditions for grinding such as thermal damage effect, machine tool stiffness, wear parameter of grinding wheel, surface roughness are considered. The algorithm is implemented with LabView software which is widely used at the industrial field. The performance of proposed algorithm is verified by comparing with the result of genetic algorithm(GA) through computer simulation.